Multi-view region-adaptive multi-temporal DMM and RGB action recognition

被引:9
|
作者
Al-Faris, Mahmoud [1 ]
Chiverton, John P. [1 ]
Yang, Yanyan [2 ]
Ndzi, David L. [3 ]
机构
[1] Univ Portsmouth, Sch Energy & Elect Engn, Portsmouth PO1 3DJ, Hants, England
[2] Univ Portsmouth, Sch Comp, Portsmouth PO1 3HE, Hants, England
[3] Univ West Scotland, Sch Comp Engn & Phys Sci, Paisley PA1 2BE, Renfrew, Scotland
关键词
Action recognition; DMM; 3D CNN; Region adaptive; ENSEMBLE;
D O I
10.1007/s10044-020-00886-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel multi-view region-adaptive multi-resolution-in-time depth motion map (MV-RAMDMM) formulation combined with appearance information. Multi-stream 3D convolutional neural networks (CNNs) are trained on the different views and time resolutions of the region-adaptive depth motion maps. Multiple views are synthesised to enhance the view invariance. The region-adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multi-class support vector machines. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public-domain data-sets, namely MSR 3D Action, Northwestern UCLA multi-view actions and MSR 3D daily activity, are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.
引用
收藏
页码:1587 / 1602
页数:16
相关论文
共 50 条
  • [31] Neural representation and learning for multi-view human action recognition
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [32] Learning Multi-View Interactional Skeleton Graph for Action Recognition
    Wang, Minsi
    Ni, Bingbing
    Yang, Xiaokang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 6940 - 6954
  • [33] Multi-View Action Recognition by Cross-domain Learning
    Nie, Weizhi
    Liu, Anan
    Yu, Jing
    Su, Yuting
    Chaisorn, Lekha
    Wang, Yongkang
    Kankanhalli, Mohan S.
    2014 IEEE 16TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2014,
  • [34] Jointly Learning Multi-view Features for Human Action Recognition
    Wang, Ruoshi
    Liu, Zhigang
    Yin, Ziyang
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4858 - 4861
  • [35] Multi-View Latent Variable Discriminative Models For Action Recognition
    Song, Yale
    Morency, Louis-Philippe
    Davis, Randall
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2120 - 2127
  • [36] Discriminative Multi-View Subspace Feature Learning for Action Recognition
    Sheng, Biyun
    Li, Jun
    Xiao, Fu
    Li, Qun
    Yang, Wankou
    Han, Junwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) : 4591 - 4600
  • [37] Unsupervised video segmentation for multi-view daily action recognition
    Liu, Zhigang
    Wu, Yin
    Yin, Ziyang
    Gao, Chunlei
    IMAGE AND VISION COMPUTING, 2023, 134
  • [38] DenseGCN: A multi-level and multi-temporal graph convolutional network for action recognition
    Yu, Chengzhang
    Bao, Wenxia
    IET IMAGE PROCESSING, 2023, 17 (12) : 3401 - 3410
  • [39] MMA: a multi-view and multi-modality benchmark dataset for human action recognition
    Gao, Zan
    Han, Tao-tao
    Zhang, Hua
    Xue, Yan-bing
    Xu, Guang-ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29383 - 29404
  • [40] A Multi-modal & Multi-view & Interactive Benchmark Dataset for Human Action Recognition
    Xu, Ning
    Liu, Anan
    Nie, Weizhi
    Wong, Yongkang
    Li, Fuwu
    Su, Yuting
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1195 - 1198