NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification

被引:16
|
作者
Busch, Julian [1 ]
Kocheturov, Anton [2 ]
Tresp, Volker [3 ]
Seidl, Thomas [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich, Germany
[2] Siemens Technol, Princeton, NJ USA
[3] Siemens AG, Munich, Germany
关键词
Graph Neural Networks; Malware Detection;
D O I
10.1145/3468791.3468814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malicious software (malware) poses an increasing threat to the security of communication systems as the number of interconnected mobile devices increases exponentially. While some existing malware detection and classification approaches successfully leverage network traffic data, they treat network flows between pairs of endpoints independently and thus fail to leverage rich communication patterns present in the complete network. Our approach first extracts flow graphs and subsequently classifies them using a novel edge feature-based graph neural network model. We present three variants of our base model, which support malware detection and classification in supervised and unsupervised settings. We evaluate our approach on flow graphs that we extract from a recently published dataset for mobile malware detection that addresses several issues with previously available datasets. Experiments on four different prediction tasks consistently demonstrate the advantages of our approach and show that our graph neural network model can boost detection performance by a significant margin.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [31] Neural Architecture Search for GNN-Based Graph Classification
    Wei, Lanning
    Zhao, Huan
    He, Zhiqiang
    Yao, Quanming
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)
  • [32] Symbols Detection and Classification using Graph Neural Networks
    Renton, Guillaume
    Balcilar, Muhammet
    Heroux, Pierre
    Gauzere, Benoit
    Honeine, Paul
    Adam, Sebastien
    PATTERN RECOGNITION LETTERS, 2021, 152 : 391 - 397
  • [33] Auto-GNN: Neural architecture search of graph neural networks
    Zhou, Kaixiong
    Huang, Xiao
    Song, Qingquan
    Chen, Rui
    Hu, Xia
    FRONTIERS IN BIG DATA, 2022, 5
  • [34] An Android Malware Detection Framework Using Graph Embeddings and Convolutional Neural Networks
    Gibert, Daniel
    Lamas, Alba
    Martins, Ruben
    Mateu, Caries
    Planes, Jordi
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 45 - 53
  • [35] An Android Malware Detection Method Based on Metapath Aggregated Graph Neural Network
    Li, Qingru
    Zhang, Yufei
    Wang, Fangwei
    Wang, Changguang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 : 344 - 357
  • [36] Cryptocurrency Mining Malware Detection Based on Behavior Pattern and Graph Neural Network
    Zheng, Rui
    Wang, Qiuyun
    He, Jia
    Fu, Jianming
    Suri, Guga
    Jiang, Zhengwei
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [37] DawnGNN: Documentation augmented windows malware detection using graph neural network
    Feng, Pengbin
    Gai, Le
    Yang, Li
    Wang, Qin
    Li, Teng
    Xi, Ning
    Ma, Jianfeng
    COMPUTERS & SECURITY, 2024, 140
  • [38] Malware Detection by Control-Flow Graph Level Representation Learning With Graph Isomorphism Network
    Gao, Yun
    Hasegawa, Hirokazu
    Yamaguchi, Yukiko
    Shimada, Hajime
    IEEE ACCESS, 2022, 10 : 111830 - 111841
  • [39] Policy-GNN: Aggregation Optimization for Graph Neural Networks
    Lai, Kwei-Herng
    Zha, Daochen
    Zhou, Kaixiong
    Hu, Xia
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 461 - 471
  • [40] HGK-GNN: Heterogeneous Graph Kernel based Graph Neural Networks
    Long, Qingqing
    Xu, Lingjun
    Fang, Zheng
    Song, Guojie
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1129 - 1138