Layered material platform for surface plasmon resonance biosensing

被引:53
|
作者
Wu, F. [1 ,2 ,10 ]
Thomas, P. A. [1 ]
Kravets, V. G. [1 ]
Arola, H. O. [3 ]
Soikkeli, M. [3 ]
Iljin, K. [3 ]
Kim, G. [4 ]
Kim, M. [5 ]
Shin, H. S. [4 ,5 ,6 ]
Andreeva, D., V [7 ]
Neumann, C. [8 ]
Kuellmer, M. [8 ]
Turchanin, A. [8 ]
De Fazio, D. [9 ]
Balci, O. [9 ]
Babenko, V [9 ]
Luo, B. [9 ]
Goykhman, I [9 ]
Hofmann, S. [9 ]
Ferrari, A. C. [9 ]
Novoselov, K. S. [1 ,7 ,10 ]
Grigorenko, A. N. [1 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Xi An Jiao Tong Univ, Sch Sci, Key Lab Nonequilibrium Synth & Modulat Condensed, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] VTT Tech Res Ctr Finland Ltd, VTT, POB 1000, FI-02044 Espoo, Finland
[4] Ulsan Natl Inst Sci & Technol, Dept Energy Engn, Ulsan 44919, South Korea
[5] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 44919, South Korea
[6] Ulsan Natl Inst Sci & Technol, Low Dimens Carbon Mat Ctr, Ulsan 44919, South Korea
[7] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[8] Friedrich Schiller Univ Jena, Inst Phys Chem, Lessingstr 10, D-07743 Jena, Germany
[9] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 OFA, England
[10] Chongqing 2D Mat Inst, Liangjiang New Area, Chongqing 400714, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
COVALENT MODIFICATION; GRAPHENE; FUNCTIONALIZATION; PHASE; IMMUNOASSAY; SENSORS; ROADMAP; GOLD;
D O I
10.1038/s41598-019-56105-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in similar to 50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity similar to 0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Application of the Localized Surface Plasmon Resonance to Energy Harvesting and Biosensing
    Centeno, Anthony
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2014,
  • [42] Plasmonic propagations distances for interferometric surface plasmon resonance biosensing
    Lepage, Dominic
    Carrier, Dominic
    Jimenez, Alvaro
    Beauvais, Jacques
    Dubowski, Jan J.
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 7
  • [43] Sensitivity enhancement of surface plasmon resonance biosensing of small molecules
    Mitchell, JS
    Wu, YQ
    Cook, CJ
    Main, L
    [J]. ANALYTICAL BIOCHEMISTRY, 2005, 343 (01) : 125 - 135
  • [44] Cavity Plasmon Resonance Biosensing
    Razansky, Daniel
    Einziger, Pinchas D.
    Adam, Dan
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (05) : 580 - 585
  • [45] Collection mode surface plasmon fibre sensors: A new biosensing platform
    Francois, A.
    Boehm, J.
    Oh, S. Y.
    Kok, T.
    Monro, T. M.
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (07): : 3154 - 3159
  • [46] Probabilistic evaluation of surface-enhanced localized surface plasmon resonance biosensing
    Yang, Heejin
    Lee, Wonju
    Hwang, Taewon
    Kim, Donghyun
    [J]. OPTICS EXPRESS, 2014, 22 (23): : 28412 - 28426
  • [47] Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing
    Yaakov, Noga
    Chaikin, Yulia
    Wexselblatt, Ezequiel
    Tor, Yitzhak
    Vaskevich, Alexander
    Rubinstein, Israel
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (42) : 10148 - 10155
  • [48] Surface Plasmon Resonance Absorption in a Multi layered Bigrating
    Suyama, T.
    Zhang, Y.
    Okuno, Y.
    Luo, Z.
    Matsuda, T.
    [J]. PIERS 2010 XI'AN: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 1458 - +
  • [49] Determination of the composition of heterogeneous binder solutions by surface plasmon resonance biosensing
    Gaudreault, Jimmy
    Liberelle, Benoit
    Durocher, Yves
    Henry, Olivier
    De Crescenzo, Gregory
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] Trends in surface plasmon resonance biosensing: materials, methods, and machine learning
    Stuart, Daniel D.
    Van Zant, Westley
    Valiulis, Santino
    Malinick, Alexander S.
    Hanson, Victor
    Cheng, Quan
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (24) : 5221 - 5232