Evaluation of Sn(ii) aminoalkoxide precursors for atomic layer deposition of SnO thin films

被引:2
|
作者
Parish, James D. [1 ]
Snook, Michael W. [1 ]
Johnson, Andrew L. [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
关键词
CHEMICAL-VAPOR-DEPOSITION; LIQUID INJECTION MOCVD; DIVALENT GERMANIUM; STABLE GERMYLENES; CRYSTAL-STRUCTURE; TIN(II) COMPOUNDS; TIN-COMPOUNDS; X-RAY; COMPLEXES; CHEMISTRY;
D O I
10.1039/d1dt02480a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We have successfully prepared and structurally characterized a family of eight tin(ii) heteroleptic complexes, [Sn(NR2)(ON)](x) (NR2 = NMe2 (1a-d) or N(SiMe3)(2) (2a-d); x = 1 or 2) and four homoleptic systems, [Sn(kappa(2)-ON)(2)] (3a-d) from a series of aminoalcohols and fluorinated aminoalcohols (H{ON}) having a different number of methyl/trifluoromethyl substituents at the alpha-carbon atom, [HOC(R-1)(R-2)CH2NMe2] (R-1 = R-2 = H (H{dmae}) (a); R-1 = H, R-2 = Me (H{dmap}) (b); R-1 = R-2 = Me (H{dmamp}) (c); R-1 = R-2 = CF3 (H{Fdmamp}) (d)). The synthetic route used reactions of either [Sn{N(SiMe3)(2)}(2)] or [Sn(NMe2)(2)] with one or two equivalents of the aminoalcohols (a-d) in dry aprotic solvents leading to elimination of amines and formation of the Sn(ii) species 1a-d, 2a-d and 3a-d respectively. All complexes were thoroughly characterized by NMR spectroscopy (H-1, C-13, F-19, and Sn-119) as well as single-crystal X-ray diffraction studies. In all case the solid state molecular structures of the complexes have been unambiguously established: the solid state structures 1a-b and 1c are dimeric with central {Sn2N2} cores resulting from bridging {mu(2)-NMe2} units, in which the Sn(ii) atoms are four-coordinate. In contrast, the solid state structures of complexes 1c and 2a-c possess similarly dimeric structures, with four-coordinate Sn(ii) atoms, in which the oxygen atoms of the {ON} ligand bridge two Sn(ii) centres to form dimers with a central {Sn2O2} core. Uniquely in this study, 2d, [Sn(kappa(2)-O,N-OCMe2CH2NMe2){N(SiMe3)(2)}] is monomeric with a three coordinate Sn(ii) centre. The homoleptic complexes 3a-d are all isostructural with monomeric four-coordinate structures with disphenoidal geometries. Solution state NMR studies reveal complicated ligand exchange processes in the case of the heteroleptic complexes 1a-d and 2a-d. Contrastingly, the homoleptic systems 3a-d show no such behaviour. While complexes 1a-d and 2a-d displayed either poor thermal stability or multistep thermal decomposition processes, the thermal behaviour of the homoleptic complexes, 3a-d, was investigated in order to determine the effects, if any, of the degree of fluorination and asymmetry of the aminoalkoxide ligands on the suitability of these complexes as ALD precursors for the deposition of SnO thin films.
引用
收藏
页码:13902 / 13914
页数:13
相关论文
共 50 条
  • [31] Phosphites as precursors in atomic layer deposition thin film synthesis
    Kvamme, Kristian B.
    Ruud, Amund
    Weibye, Kristian
    Sajavaara, Timo
    Nilsen, Ola
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):
  • [32] Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition
    Rosenthal, A
    Tarre, A
    Gerst, A
    Sundqvist, J
    Hårsta, A
    Aidla, A
    Aarik, J
    Sammelselg, V
    Uustare, T
    SENSORS AND ACTUATORS B-CHEMICAL, 2003, 93 (1-3) : 552 - 555
  • [33] (Sn,Al)Ox Films Grown by Atomic Layer Deposition
    Heo, Jaeyeong
    Liu, Yiqun
    Sinsermsuksakul, Prasert
    Li, Zhefeng
    Sun, Leizhi
    Noh, Wontae
    Gordon, Roy G.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (20): : 10277 - 10283
  • [34] Atomic Layer Deposition of Zinc Glutarate Thin Films
    Salmi, Leo D.
    Mattinen, Miika
    Niemi, Teemu
    Heikkila, Mikko J.
    Mizohata, Kenichiro
    Korhonen, Sanna
    Hirvonen, Sami-Pekka
    Raisanen, Jyrki
    Ritala, Mikko
    ADVANCED MATERIALS INTERFACES, 2017, 4 (22):
  • [35] Nickel Germanide Thin Films by Atomic Layer Deposition
    Vayrynen, Katja
    Vihervaara, Anton
    Hatanpaa, Timo
    Mattinen, Miika
    Heikkila, Mikko J.
    Mizohata, Kenichiro
    Raisanen, Jyrki
    Ritala, Mikko
    Leskela, Markku
    CHEMISTRY OF MATERIALS, 2019, 31 (14) : 5314 - 5319
  • [36] Atomic layer deposition of copper sulfide thin films
    Schneider, Nathanaelle
    Lincot, Daniel
    Donsanti, Frederique
    THIN SOLID FILMS, 2016, 600 : 103 - 108
  • [37] Atomic layer deposition of sodium fluoride thin films
    Kuraitis, Sara
    Kang, Donghyeon
    Mane, Anil U.
    Zhou, Hua
    Soares, Jake
    Elam, Jeffrey W.
    Graugnard, Elton
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):
  • [38] Ruthenium thin films grown by atomic layer deposition
    Aaltonen, Titta
    Alén, Petra
    Ritala, Mikko
    Leskelä, Markku
    Advanced Materials, 2003, 15 (01) : 45 - 49
  • [39] Rubidium containing thin films by atomic layer deposition
    Sonsteby, Henrik H.
    Weibye, Kristian
    Bratvold, Jon E.
    Nilsen, Ola
    DALTON TRANSACTIONS, 2017, 46 (46) : 16139 - 16144
  • [40] Atomic Layer Deposition of Tin Monosulfide Thin Films
    Sinsermsuksakul, Prasert
    Heo, Jaeyeong
    Noh, Wontae
    Hock, Adam S.
    Gordon, Roy G.
    ADVANCED ENERGY MATERIALS, 2011, 1 (06) : 1116 - 1125