The development and application of spatio-temporal data engine

被引:0
|
作者
Wu, XiaoChun [1 ]
Niu, ZhenGuo [1 ]
Wang, PeiFa [2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
[2] Nanjing Univ, Dept Geo Inform Science, Nanjing 210093, Peoples R China
关键词
the spatio-temporal data model; the spatio-temporal data engine; ArcSDE;
D O I
10.1117/12.761370
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Time and space are ubiquitous aspects of reality. The spatio-temporal data is our cognition to external matter and the spatio-temporal data model is the theoretical foundation to manage the spatio-temporal data. But now the research of the spatio-temporal data model still is on the stage of theoretical research and can not implement the real application. Those how to uniformly manage the Spatio-Temporal multi-data source and different structure data and how to implement the Spatio-Temporal data model practically need to be crucially solved. We use the principle and the construction idea of the data engine for reference, build the spatio-temporal data engine by applying the notion and function of the data engine into the theory of the Spatio-Temporal data model and then use the Spatio-Temporal data engine to implement the application of the spatio-temporal data. The article mainly introduces the construction idea, the design, the implement of the spatio-temporal data engine and provides the example of using the spatio engine - ArcSDE to implement the application of the spatio-temporal data which explains our thinking of implementing the spatio-temporal data engine. The article is an attempt to resolve how to effectively and uniformly manage the Spatio-Temporal multi-data source and how to make the Spatio-Temporal data used in practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CUPID: An efficient spatio-temporal data engine
    Wu, Hang
    Wang, Bo
    Zhang, Ming
    Li, Guanyao
    Li, Ruiyuan
    Liu, Yang
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 531 - 544
  • [2] JUST: JD Urban Spatio-Temporal Data Engine
    Li, Ruiyuan
    He, Huajun
    Wang, Rubin
    Huang, Yuchuan
    Liu, Junwen
    Ruan, Sijie
    He, Tianfu
    Bao, Jie
    Zheng, Yu
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1558 - 1569
  • [3] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [4] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [5] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [6] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [7] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [8] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [9] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [10] Application of Mixtures of Gaussians for Tracking Clusters in Spatio-temporal Data
    Ertl, Benjamin
    Meyer, Joerg
    Streit, Achim
    Schneider, Matthias
    [J]. KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 45 - 54