Multivariate Watershed Segmentation of Compositional Data

被引:0
|
作者
Hanselmann, Michael [1 ]
Koethe, Ullrich [1 ]
Renard, Bernhard Y. [1 ]
Kirchner, Marc [1 ]
Heeren, Ron M. A. [2 ]
Hamprecht, Fred A. [1 ]
机构
[1] Heidelberg Univ, Heidelberg Collaboratory Image Proc, D-6900 Heidelberg, Germany
[2] FOM Inst Atom & Mol Phys, Amsterdam, Netherlands
关键词
CLASSIFICATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Watershed segmentation of spectral images is typically achieved by first transforming the high-dimensional input data into a scalar boundary indicator map which is used to derive the watersheds. We propose to combine a Random Forest classifier with the watershed transform and introduce three novel methods to obtain scalar boundary indicator maps from class probability maps. We further introduce the multivariate watershed as a generalization of the classic watershed approach.
引用
收藏
页码:180 / +
页数:3
相关论文
共 50 条
  • [1] SEGMENTATION OF MULTIVARIATE DATA
    TENKROODEN, A
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1979, 13 (01) : 84 - 85
  • [2] Interpretation of multivariate outliers for compositional data
    Filzmoser, Peter
    Hron, Karel
    Reimann, Clemens
    [J]. COMPUTERS & GEOSCIENCES, 2012, 39 : 77 - 85
  • [3] Change point detection for compositional multivariate data
    K. J., Prabuchandran
    Singh, Nitin
    Dayama, Pankaj
    Agarwal, Ashutosh
    Pandit, Vinayaka
    [J]. APPLIED INTELLIGENCE, 2022, 52 (02) : 1930 - 1955
  • [4] Application of the multivariate runs test to compositional data
    Sharp, W. E.
    [J]. MATHEMATICAL GEOLOGY, 2006, 38 (08): : 1017 - 1025
  • [5] MULTIVARIATE-ANALYSIS OF COMPOSITIONAL DATA - COMMENT
    BAXTER, MJ
    [J]. ARCHAEOMETRY, 1993, 35 : 112 - 115
  • [6] Detecting multivariate outliers in artefact compositional data
    Baxter, MJ
    [J]. ARCHAEOMETRY, 1999, 41 : 321 - 338
  • [7] Change point detection for compositional multivariate data
    Prabuchandran K. J.
    Nitin Singh
    Pankaj Dayama
    Ashutosh Agarwal
    Vinayaka Pandit
    [J]. Applied Intelligence, 2022, 52 : 1930 - 1955
  • [8] Application of the Multivariate Runs Test to Compositional Data
    W. E. Sharp
    [J]. Mathematical Geology, 2006, 38 : 1017 - 1025
  • [9] Robust multivariate analysis of compositional data of treated wastewaters
    Petr Praus
    [J]. Environmental Earth Sciences, 2019, 78