Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds

被引:18
|
作者
Song, Xianfa [1 ]
Zhao, Lin [2 ]
机构
[1] Tianjin Univ, Dept Math, Sch Sci, Tianjin 300072, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
关键词
Lichnerowicz equation; Gradient estimate; Harnack differential inequality; EINSTEIN-CONSTRAINT EQUATIONS; CONSTANT MEAN-CURVATURE;
D O I
10.1007/s00033-009-0047-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a smooth compact Riemannian manifold of dimension n >= 3. Denote Delta(g) = -div(g)del the Laplace-Beltrami operator. We establish some local gradient estimates for the positive solutions of the Lichnerowicz equation Delta(g)u(x) + h(x)u(x) = A(x)u(p)(x) + B(x)/u(q)(x) on (M, g). Here, p, q >= 0, A(x), B(x) and h(x) are smooth functions on (M, g). We also derive the Harnack differential inequality for the positive solutions of ut(x, t) + Delta(g)u(x, t) + h(x) u(x, t) = A(x)u(p)(x, t) + B(x)/u(q)(x, t) on (M, g) with initial data u(x, 0) > 0.
引用
收藏
页码:655 / 662
页数:8
相关论文
共 50 条