Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation

被引:97
|
作者
Bai, Ruxue [1 ]
Xu, Quansheng [1 ]
Meng, Zong [1 ]
Cao, Lixiao [1 ]
Xing, Kangshuo [1 ]
Fan, Fengjie [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; Multi-scale clipping fusion; Data augmentation; Multi-channel convolution neural network; Variable working condition; ROTATING MACHINERY; ENTROPY; AUTOENCODER;
D O I
10.1016/j.measurement.2021.109885
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep learning has evolved to a prevalent approach for machinery fault diagnosis in recent years. However, the high demanding for training data amount refrains its implementation. In this study, we proposed a novel rolling bearing fault diagnosis strategy based on multi-channel convolution neural network(MCNN) combining multiscale clipping fusion(MSCF) data augmentation technique. The fault signals were augmented using MSCF before transformed to time-frequency images through short-time Fourier transform, then the multi-sensor derived image data were fused by MCNN for feature extraction and fault pattern classification. Experiments validate that the combination of MSCF and MCNN is good at making the best of the information contained in each single sensor recording, leading to a significantly improved fault pattern classification accuracy and cluster effect. The proposed approach is low complexity but effective and robust, it is well suited for bearing fault diagnosis in case limited sensor data and/or variable working condition is presented.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
    Ma, Jianpeng
    Li, Zhenghui
    Li, Chengwei
    Zhan, Liwei
    Zhang, Guang-Zhu
    ENTROPY, 2021, 23 (02) : 1 - 28
  • [32] Rolling bearing fault diagnosis method based on a multi-scale and improved gated recurrent neural network with dual attention
    Wang M.
    Deng A.
    Ma T.
    Zhang Y.
    Xue Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (06): : 84 - 92and103
  • [33] Multi-scale Feature Learning Network for Bearing fault Diagnosis with Information Fusion
    Luo, Shuyang
    Zhou, Qi
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024, 2024, : 191 - 196
  • [34] Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network
    Wu, Rouhui
    Ren, Yizhu
    Tan, Mengying
    Nie, Lei
    BUILDING SIMULATION, 2024, 17 (03) : 371 - 386
  • [35] Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network
    Rouhui Wu
    Yizhu Ren
    Mengying Tan
    Lei Nie
    Building Simulation, 2024, 17 : 371 - 386
  • [36] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [37] Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis
    Hao, Yijia
    Wang, Huan
    Liu, Zhiliang
    Han, Haoran
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [38] FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-SCALE ENTROPY AND ENSEMBLED ARTIFICIAL NEURAL NETWORK
    Chen, Fen
    Liu, Quan
    Wei, Qin
    Ting, Deng
    Ting, Yan
    Su Wenqin
    Peng Bingjie
    Zhao, Lei
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [39] Rolling bearing fault diagnosis based on efficient time channel attention optimized deep multi-scale convolutional neural networks
    Li, Ou
    Zhu, Jing
    Chen, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [40] The Method of Rolling Bearing Fault Diagnosis Based on Multi-Domain Supervised Learning of Convolution Neural Network
    Liu, Xuejun
    Sun, Wei
    Li, Hongkun
    Hussain, Zeeshan
    Liu, Aiqiang
    ENERGIES, 2022, 15 (13)