DAU-Net: Dense Attention U-Net for Pavement Crack Segmentation

被引:12
|
作者
Hsieh, Yung-An [1 ]
Tsai, Yi-Chang James [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.1109/ITSC48978.2021.9564806
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately detecting pavement cracks is essential to apply preventive and effective pavement treatments in a timely manner. In this paper, we proposed the Dense Attention U-Net (DAU-Net) to achieve pixel-wise segmentation of cracks on 3D pavement images. The encoder of the DAU-Net consists of multi-stage dense blocks to improve its capability of extracting informative contextual features. To achieve precise localization of cracks in the decoder, a novel channel attention block (CAB) is proposed, which reduces noisy responses and highlight salient encoder features using the channel attention mechanism. The DAU-Net is evaluated on large-scale, real-world 3D asphalt pavement images. In the ablation study, the proposed CAB demonstrates its effectiveness with a large boost on crack segmentation precision. In the comparative study, the DAU-Net outperforms state-of-the-art semantic segmentation models from previous works. With both qualitative and quantitative evaluations, the effectiveness of the DAU-Net is verified.
引用
收藏
页码:2251 / 2256
页数:6
相关论文
共 50 条
  • [1] DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images
    Pramanik, Payel
    Roy, Ayush
    Cuevas, Erik
    Perez-Cisneros, Marco
    Sarkar, Ram
    Xu, Chenchu
    Xu, Chenchu
    Xu, Chenchu
    Xu, Chenchu
    [J]. PLOS ONE, 2024, 19 (05):
  • [2] Sharp dense U-Net: an enhanced dense U-Net architecture for nucleus segmentation
    Senapati, Pradip
    Basu, Anusua
    Deb, Mainak
    Dhal, Krishna Gopal
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) : 2079 - 2094
  • [3] Dense and shuffle attention U-Net for automatic skin lesion segmentation
    Zhang, Guanzhong
    Wang, Shengsheng
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) : 2066 - 2079
  • [4] Rs-net: Residual Sharp U-Net architecture for pavement crack segmentation and severity assessment
    Ali, Luqman
    Aljassmi, Hamad
    Swavaf, Mohammed
    Khan, Wasif
    Alnajjar, Fady
    [J]. JOURNAL OF BIG DATA, 2024, 11 (01)
  • [5] Crack Detecting by Recursive Attention U-Net
    Wu, Zhihao
    Lu, Tao
    Zhang, Yanduo
    Wang, Bo
    Zhao, Xungang
    [J]. 2020 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2020), 2020, : 103 - 107
  • [6] Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
    Wenwen Yuan
    Yanjun Peng
    Yanfei Guo
    Yande Ren
    Qianwen Xue
    [J]. Visual Computing for Industry, Biomedicine, and Art, 5
  • [7] A Few-Shot Attention Recurrent Residual U-Net for Crack Segmentation
    Katsamenis, Iason
    Protopapadakis, Eftychios
    Bakalos, Nikolaos
    Varvarigos, Andreas
    Doulamis, Anastasios
    Doulamis, Nikolaos
    Voulodimos, Athanasios
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 199 - 209
  • [8] AttU-NET: Attention U-Net for Brain Tumor Segmentation
    Wang, Sihan
    Li, Lei
    Zhuang, Xiahai
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 302 - 311
  • [9] Attention-augmented U-Net (AA-U-Net) for semantic segmentation
    Kumar T. Rajamani
    Priya Rani
    Hanna Siebert
    Rajkumar ElagiriRamalingam
    Mattias P. Heinrich
    [J]. Signal, Image and Video Processing, 2023, 17 : 981 - 989
  • [10] Attention-augmented U-Net (AA-U-Net) for semantic segmentation
    Rajamani, Kumar T.
    Rani, Priya
    Siebert, Hanna
    ElagiriRamalingam, Rajkumar
    Heinrich, Mattias P.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 981 - 989