A Few-Shot Attention Recurrent Residual U-Net for Crack Segmentation

被引:4
|
作者
Katsamenis, Iason [1 ]
Protopapadakis, Eftychios [2 ]
Bakalos, Nikolaos [1 ]
Varvarigos, Andreas [3 ]
Doulamis, Anastasios [1 ]
Doulamis, Nikolaos [1 ]
Voulodimos, Athanasios [1 ]
机构
[1] Natl Tech Univ Athens, 9th Iroon Polytech Str 15773, Athens 15773, Greece
[2] Univ Macedonia, 156th Egnatia Str, Thessaloniki 54636, Greece
[3] Imperial Coll London, South Kensington Campus, London SW7 2BT, England
关键词
Semantic segmentation; U-Net; Attention; Recurrent residual convolutional unit; Road cracks;
D O I
10.1007/978-3-031-47969-4_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent studies indicate that deep learning plays a crucial role in the automated visual inspection of road infrastructures. However, current learning schemes are static, implying no dynamic adaptation to users' feedback. To address this drawback, we present a few-shot learning paradigm for the automated segmentation of road cracks, which is based on a U-Net architecture with recurrent residual and attention modules (R2AU-Net). The retraining strategy dynamically fine-tunes the weights of the U-Net as a few new rectified samples are being fed into the classifier. Extensive experiments show that the proposed few-shot R2AU-Net framework outperforms other state-of-the-art networks in terms of Dice and IoU metrics, on a new dataset, named CrackMap, which is made publicly available at https://github.com/ikatsamenis/CrackMap.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 50 条
  • [1] Road crack segmentation using an attention residual U-Net with generative adversarial learning
    Hu, Xing
    Yao, Minghui
    Zhang, Dawei
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9669 - 9684
  • [2] Recurrent residual U-Net for medical image segmentation
    Alom, Md Zahangir
    Yakopcic, Chris
    Hasan, Mahmudul
    Taha, Tarek M.
    Asari, Vijayan K.
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [3] CHANNEL ATTENTION RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Guo, Changlu
    Szemenyei, Marton
    Hu, Yangtao
    Wang, Wenle
    Zhou, Wei
    Yi, Yugen
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1185 - 1189
  • [4] DAU-Net: Dense Attention U-Net for Pavement Crack Segmentation
    Hsieh, Yung-An
    Tsai, Yi-Chang James
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2251 - 2256
  • [5] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    [J]. SYMMETRY-BASEL, 2020, 12 (05):
  • [6] A few-shot U-Net deep learning model for lung cancer lesion segmentation via PET/CT imaging
    Protonotarios, Nicholas E.
    Katsamenis, Iason
    Sykiotis, Stavros
    Dikaios, Nikolaos
    Kastis, George A.
    Chatziioannou, Sofia N.
    Metaxas, Marinos
    Doulamis, Nikolaos
    Doulamis, Anastasios
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2022, 8 (02)
  • [7] Attention recurrent residual U-Net for predicting pixel-level crack widths in concrete surfaces
    Rao, Aravinda S.
    Nguyen, Tuan
    Le, Son T.
    Palaniswami, Marimuthu
    Ngo, Tuan
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2022, 21 (06): : 2732 - 2749
  • [8] A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images
    Voulodimos, Athanasios
    Protopapadakis, Eftychios
    Katsamenis, Iason
    Doulamis, Anastasios
    Doulamis, Nikolaos
    [J]. SENSORS, 2021, 21 (06) : 1 - 22
  • [9] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [10] Generative adversarial U-Net for domain-free few-shot medical diagnosis
    Chen, Xiaocong
    Li, Yun
    Yao, Lina
    Adeli, Ehsan
    Zhang, Yu
    Wang, Xianzhi
    [J]. PATTERN RECOGNITION LETTERS, 2022, 157 : 112 - 118