Cross-domain structure preserving projection for heterogeneous domain adaptation

被引:39
|
作者
Wang, Qian [1 ]
Breckon, Toby P. [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham, England
关键词
Heterogeneous domain adaptation; Cross-domain projection; Image classification; Text classification;
D O I
10.1016/j.patcog.2021.108362
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous Domain Adaptation (HDA) addresses the transfer learning problems where data from the source and target domains are of different modalities (e.g., texts and images) or feature dimensions (e.g., features extracted with different methods). It is useful for multi-modal data analysis. Traditional domain adaptation algorithms assume that the representations of source and target samples reside in the same feature space, hence are likely to fail in solving the heterogeneous domain adaptation problem. Con-temporary state-of-the-art HDA approaches are usually composed of complex optimization objectives for favourable performance and are therefore computationally expensive and less generalizable. To address these issues, we propose a novel Cross-Domain Structure Preserving Projection (CDSPP) algorithm for HDA. As an extension of the classic LPP to heterogeneous domains, CDSPP aims to learn domain-specific projections to map sample features from source and target domains into a common subspace such that the class consistency is preserved and data distributions are sufficiently aligned. CDSPP is simple and has deterministic solutions by solving a generalized eigenvalue problem. It is naturally suitable for supervised HDA but has also been extended for semi-supervised HDA where the unlabelled target domain samples are available. Extensive experiments have been conducted on commonly used benchmark datasets (i.e. Office-Caltech, Multilingual Reuters Collection, NUS-WIDE-ImageNet) for HDA as well as the Office-Home dataset firstly introduced for HDA by ourselves due to its significantly larger number of classes than the existing ones (65 vs 10, 6 and 8). The experimental results of both supervised and semi-supervised HDA demonstrate the superior performance of our proposed method against contemporary state-of-the-art methods. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] ACDC: Online unsupervised cross-domain adaptation
    de Carvalho, Marcus
    Pratama, Mahardhika
    Zhang, Jie
    Yee, Edward Yapp Kien
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [32] Cross-domain Recommendation via Adversarial Adaptation
    Su, Hongzu
    Zhang, Yifei
    Yang, Xuejiao
    Hua, Hua
    Wang, Shuangyang
    Li, Jingjing
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1808 - 1817
  • [33] Cross-domain damage identification based on conditional adversarial domain adaptation
    Li, Zuoqiang
    Weng, Shun
    Xia, Yong
    Yu, Hong
    Yan, Yongyi
    Yin, Pengcheng
    ENGINEERING STRUCTURES, 2024, 321
  • [34] Domain adaptation with a shrinkable discrepancy strategy for cross-domain sentiment classification
    Fu, Yanping
    Liu, Yun
    Neurocomputing, 2022, 494 : 56 - 66
  • [35] Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
    Li, Jichang
    Li, Guanbin
    Shi, Yemin
    Yu, Yizhou
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2505 - 2514
  • [36] Joint Domain Matching and Classification for cross-domain adaptation via ELM
    Chen, Chao
    Jiang, Buyuan
    Cheng, Zhaowei
    Jin, Xinyu
    NEUROCOMPUTING, 2019, 349 : 314 - 325
  • [37] Cross-Domain Attention Network for Unsupervised Domain Adaptation Crowd Counting
    Zhang, Anran
    Xu, Jun
    Luo, Xiaoyan
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6686 - 6699
  • [38] Cross-Domain Person Reidentification Using Domain Adaptation Ranking SVMs
    Ma, Andy J.
    Li, Jiawei
    Yuen, Pong C.
    Li, Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (05) : 1599 - 1613
  • [39] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [40] Multi-domain adaptation for cross-domain semantic slot filling
    Zhang, Yuhui
    Chen, Li
    Ju, Shenggen
    Liu, Gaoshuo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123