Real-Time Anomaly Detection for Traveling Individuals

被引:0
|
作者
Ma, Tian-Shyan [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Jhongli, Taiwan
关键词
Ubiquitous computing; deviation detection; emergency notification; location awareness; assistive technology;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study real-time anomaly detection in a context that considers user trajectories as input and tries to identify anomaly for users following normal routes such as taking public transportation from the workplace to home or vice versa. Trajectories are modeled as a discrete-time series of axis-parallel constraints ("boxes") in the 2D space. The incremental comparison between two trajectories where one trajectory has the current movement pattern and the other is a norm can be calculated according to similarity between two boxes. The proposed system was implemented and evaluated with eight individuals with cognitive impairments. The experimental results showed that recall was 95.0% and precision was 90.9% on average without false alarm suppression. False alarms and false negatives dropped when axis rotation was applied. The precision with axis rotation was 97.6% and the recall was 98.8%. The average time used for sending locations, running anomaly detection, and issuing warnings was in the range of 15.1 to 22.7 seconds.
引用
下载
收藏
页码:273 / 274
页数:2
相关论文
共 50 条
  • [21] Unsupervised real-time anomaly detection for streaming data
    Ahmad, Subutai
    Lavin, Alexander
    Purdy, Scott
    Agha, Zuha
    NEUROCOMPUTING, 2017, 262 : 134 - 147
  • [22] An Adaptive Approach to Granular Real-Time Anomaly Detection
    Chin-Tser Huang
    Jeff Janies
    EURASIP Journal on Advances in Signal Processing, 2009
  • [23] ADSaS: Comprehensive Real-Time Anomaly Detection System
    Lee, Sooyeon
    Kim, Huy Kang
    INFORMATION SECURITY APPLICATIONS, WISA 2018, 2019, 11402 : 29 - 41
  • [24] Near Real-Time Anomaly Detection in NFV Infrastructures
    Derstepanians, Arman
    Vannucci, Marco
    Cucinotta, Tommaso
    Sahebrao, Avhad Kiran
    Lahiri, Sourav
    Artale, Antonino
    Fichera, Silvia
    2022 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2022, : 26 - 32
  • [25] Real-time anomaly detection in full motion video
    Konowicz, Glenn
    Li, Jiang
    FULL MOTION VIDEO (FMV) WORKFLOWS AND TECHNOLOGIES FOR INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (ISR) AND SITUATIONAL AWARENESS, 2012, 8386
  • [26] Real-time multiple object tracking and anomaly detection
    Han, M
    Gong, YH
    STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2005, 2005, 5682 : 173 - 182
  • [27] Finding Needle in a Haystack: An Algorithm for Real-Time Log Anomaly Detection with Real-Time Learning
    Chitnis, Prachi
    Asthana, Abhaya
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS, ISSREW, 2023, : 142 - 147
  • [28] Real-time passenger flow anomaly detection in metro system
    Wei, Xiulan
    Zhang, Yong
    Zhang, Xinyu
    Ge, Qibin
    Yin, Baocai
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (10) : 2020 - 2033
  • [29] Real-time big data processing for anomaly detection: A Survey
    Habeeb, Riyaz Ahamed Ariyaluran
    Nasaruddin, Fariza
    Gani, Abdullah
    Hashem, Ibrahim Abaker Targio
    Ahmed, Ejaz
    Imran, Muhammad
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 45 : 289 - 307
  • [30] Real-time anomaly detection in gas sensor streaming data
    Wu, Haibo
    Shi, Shiliang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (01) : 81 - 88