Effect of normalization on microarray-based classification

被引:0
|
作者
Hua, Jianping [1 ]
Balagurunathan, Yoganand [1 ]
Chen, Yidong [2 ]
Lowey, Daines [1 ]
Bittner, Michael L. [1 ]
Xiong, Zixiang [3 ]
Suh, Edward [1 ]
Dougherty, Edward R. [1 ,3 ]
机构
[1] Translat Genom Res Inst, Phoenix, AZ 85004 USA
[2] NIH, NHGRI, Bethesda, MD USA
[3] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS | 2006年
关键词
D O I
10.1109/GENSIPS.2006.353129
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When using cDNA microarrays, normalization to correct biases is a common preliminary step before carrying out any data analysis, its objective being to reduce the systematic variations between the arrays. The biases are due to various systematic factors - scanner setting, amount of mRNA in the sample pool, and dye response characteristics between the channels. Since expression-based phenotype classification is a major use of microarrays, it is important to evaluate microarray normalization procedures relative to classification. Using a model-based approach, we model the systemic-error process to generate synthetic gene-expression values with known ground truth. Three normalization methods and three classification rules are then considered. Our simulation shows that normalization can have a significant benefit for classification under difficult experimental conditions.
引用
收藏
页码:7 / +
页数:2
相关论文
共 50 条
  • [41] The need for standardization of Salmonella microarray-based methods
    Malorny, B
    Helmuth, R
    Aarts, H
    Hoorfar, J
    ASM NEWS, 2004, 70 (11): : 501 - 501
  • [42] Microarray-based identification of VegT targets in Xenopus
    Taverner, NV
    Kofron, M
    Shin, Y
    Kabitschke, C
    Gilchrist, MJ
    Wylie, C
    Cho, KWY
    Heasman, J
    Smith, JC
    MECHANISMS OF DEVELOPMENT, 2005, 122 (03) : 333 - 354
  • [43] A microarray-based method for detecting methylated loci
    I. Hatada
    A. Kato
    S. Morita
    Y. Obata
    K. Nagaoka
    A. Sakurada
    M. Sato
    A. Horii
    A. Tsujimoto
    K. Matsubara
    Journal of Human Genetics, 2002, 47 : 448 - 451
  • [44] Clinical applications of microarray-based diagnostic tests
    Wu, L
    Williams, PM
    Koch, WH
    BIOTECHNIQUES, 2005, 39 (04) : 577 - 582
  • [45] Microarray-based mutation detection in the dystrophin gene
    Hegde, Madhuri R.
    Chin, Ephrem L. H.
    Mulle, Jennifer G.
    Okou, David T.
    Warren, Stephen I.
    Zwick, Michael E.
    HUMAN MUTATION, 2008, 29 (09) : 1091 - 1099
  • [46] Microarray-Based Sketches of the HERV Transcriptome Landscape
    Perot, Philippe
    Mugnier, Nathalie
    Montgiraud, Cecile
    Gimenez, Juliette
    Jaillard, Magali
    Bonnaud, Bertrand
    Mallet, Francois
    PLOS ONE, 2012, 7 (06):
  • [47] Microarray-Based Allergy Diagnosis: Quo Vadis?
    Huang, Huey-Jy
    Campana, Raffaela
    Akinfenwa, Oluwatoyin
    Curin, Mirela
    Sarzsinszky, Eszter
    Karsonova, Antonina
    Riabova, Ksenja
    Karaulov, Alexander
    Niespodziana, Katarzyna
    Elisyutina, Olga
    Fedenko, Elena
    Litovkina, Alla
    Smolnikov, Evgenii
    Khaitov, Musa
    Vrtala, Susanne
    Schlederer, Thomas
    Valenta, Rudolf
    FRONTIERS IN IMMUNOLOGY, 2021, 11
  • [48] Microarray-based expression profiling in prostate tumors
    Elek, J
    Park, KH
    Narayanan, R
    IN VIVO, 2000, 14 (01): : 173 - 182
  • [49] Microarray-Based Response Prediction in Esophageal Adenocarcinoma
    Schauer, Matthias
    Janssen, Klaus-Peter
    Rimkus, Caroline
    Raggi, Matthias
    Feith, Marcus
    Friess, Helmut
    Theisen, Joerg
    CLINICAL CANCER RESEARCH, 2010, 16 (01) : 330 - 337
  • [50] Single injection microarray-based biosensor kinetics
    Krishnamoorthy, Ganeshram
    Carlen, Edwin T.
    Beusink, J. Bianca
    Schasfoort, Richard B. M.
    van den Berg, Albert
    ANALYTICAL METHODS, 2009, 1 (03) : 162 - 169