Stability of families of probability distributions under reduction of the number of degrees of freedom

被引:1
|
作者
Vignat, C
Naudts, J
机构
[1] Univ Antwerp, Dept Fys, B-2610 Antwerp, Belgium
[2] Lab Signaux & Images, Grenoble, France
[3] Univ Marne La Vallee, Equipe Signal & Commun, F-77454 Marne La Vallee, France
关键词
D O I
10.1016/j.physa.2004.10.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider two classes of probability distributions for configurations of the ideal gas. They depend only on kinetic energy and they remain of the same form when degrees of freedom are integrated out. The relation with equilibrium distributions of Tsallis' thermostatistics is discussed. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:296 / 302
页数:7
相关论文
共 50 条
  • [31] SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS
    BARLOW, RE
    GUPTA, SS
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03): : 905 - &
  • [32] On the Stability of Mixtures of Probability Distributions to Perturbations of Mixing Distributions
    Nazarov A.L.
    [J]. Journal of Mathematical Sciences, 2022, 267 (1) : 68 - 80
  • [33] A dissimilarity measure for an arbitrary number of probability distributions
    Majerník, V
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2004, 33 (06) : 673 - 678
  • [34] Reduction of active degrees of freedom in motion learning
    Nishiyama, K
    Ochisai, K
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGS, 2003, : 931 - 936
  • [35] On the reduction of molecular degrees of freedom in computer simulations
    Lyubartsev, AP
    Laaksonen, A
    [J]. NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 219 - 244
  • [36] On the stability of a vibroisolation system with more degrees of freedom
    Skliba, Jan
    Sivcak, Michal
    Skarolek, Antonin
    [J]. VIBRATION PROBLEMS ICOVP 2005, 2007, 111 : 429 - +
  • [37] Stability of sitting postures: the influence of degrees of freedom
    Hendriks, H. M.
    Spoorx, C. W.
    De Jong, A. M.
    Goossens, R. H. M.
    [J]. ERGONOMICS, 2006, 49 (15) : 1611 - 1626
  • [38] STABILITY OF MECHANICAL SYSTEMS WITH MANY DEGREES OF FREEDOM
    SIDOROV, IM
    KOROTAYE.IP
    [J]. ENGINEERING CYBERNETICS, 1965, (04): : 181 - &
  • [39] On stability in Hamiltonian systems with two degrees of freedom
    Yu. N. Bibikov
    [J]. Mathematical Notes, 2014, 95 : 174 - 179
  • [40] On Stability in Hamiltonian Systems with Two Degrees of Freedom
    Bibikov, Yu. N.
    [J]. MATHEMATICAL NOTES, 2014, 95 (1-2) : 174 - 179