STRONG CONVERGENCE THEOREMS FOR MAXIMAL MONOTONE OPERATORS AND GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES

被引:0
|
作者
Inthakon, W. [1 ]
Dhompongsa, S. [1 ]
Takahashi, W. [2 ,3 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung, Taiwan
关键词
Maximal monotone operator; hybrid method; generalized nonexpansive mapping; sunny generalized nonexpansive retraction; HYBRID METHODS; FIXED-POINTS; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove strong convergence theorems by two hybrid methods for finding a common element of the set of zero points of a maximal monotone operator and the set of fixed points of a generalized nonexpansive mapping in a Banach space. Using these results, we obtain new convergence results for resolvents of maximal monotone operators and for generalized nonexpansive mappings in a Banach space.
引用
收藏
页码:45 / 63
页数:19
相关论文
共 50 条
  • [41] Convergence theorems for generalized nonexpansive mappings in uniformly convex Banach spaces
    Thakur, Dipti
    Thakur, Balwant Singh
    Postolache, Mihai
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 12
  • [42] Convergence Theorems for a Hybrid Pair of Generalized Nonexpansive Mappings in Banach Spaces
    Uddin, Izhar
    Imdad, M.
    Ali, Javid
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (02) : 695 - 705
  • [43] Convergence theorems for generalized nonexpansive mappings in uniformly convex Banach spaces
    Dipti Thakur
    Balwant Singh Thakur
    Mihai Postolache
    [J]. Fixed Point Theory and Applications, 2015
  • [44] Strong convergence theorems for maximal monotone operators and continuous pseudocontractive mappings
    Jung, Jong Soo
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4409 - 4426
  • [45] Weak and strong convergence theorems for maximal monotone operators in a Banach space
    Kamimura, S
    Kohsaka, F
    Takahashi, W
    [J]. SET-VALUED ANALYSIS, 2004, 12 (04): : 417 - 429
  • [46] Weak and Strong Convergence Theorems for Maximal Monotone Operators in a Banach Space
    Shoji Kamimura
    Fumiaki Kohsaka
    Wataru Takahashi
    [J]. Set-Valued Analysis, 2004, 12 : 417 - 429
  • [47] STRONG CONVERGENCE THEOREMS BY MONOTONE HYBRID METHOD FOR A FAMILY OF GENERALIZED NONEXPANSWE MAPPINGS IN BANACH SPACES
    Klin-eam, Chakkrid
    Suantai, Suthep
    Takahashi, Wataru
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 1971 - 1989
  • [48] STRONG CONVERGENCE THEOREMS BY MONOTONE HYBRID METHOD FOR A FAMILY OF HEMI-RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES
    Klin-eam, Chakkrid
    Suantai, Suthep
    Takahashi, Wataru
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2009, 10 (03) : 487 - 502
  • [49] A weak convergence theorem for relatively nonexpansive mappings and maximal monotone operators in a banach space
    Takahashi, Wataru
    [J]. Journal of Applied and Numerical Optimization, 2021, 3 (01): : 197 - 210
  • [50] Convergence Theorems for Maximal Monotone Operators, Weak Relatively Nonexpansive Mappings and Equilibrium Problems
    Nammanee, Kamonrat
    Suantai, Suthep
    Cholamjiak, Prasit
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,