A deep learning interpretable classifier for diabetic retinopathy disease grading

被引:95
|
作者
de la Torre, Jordi [1 ]
Valls, Aida [1 ]
Puig, Domenec [1 ]
机构
[1] Univ Rovira & Virgili, Escola Tecn Super Engn, Dept Engn Informat & Matemat, Avinguda Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Deep learning; Classification; Explanations; Diabetic retinopathy; Model interpretation;
D O I
10.1016/j.neucom.2018.07.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a diabetic retinopathy deep learning interpretable classifier. On one hand, it classifies retina images into different levels of severity with good performance. On the other hand, this classifier is able of explaining the classification results by assigning a score for each point in the hidden and input spaces. These scores indicate the pixel contribution to the final classification. To obtain these scores, we propose a new pixel-wise score propagation model that for every neuron, divides the observed output score into two components. With this method, the generated visual maps can be easily interpreted by an ophthalmologist in order to find the underlying statistical regularities that help to the diagnosis of this eye disease. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 50 条
  • [41] An Integrated Deep Learning Approach for Computer-Aided Diagnosis of Diverse Diabetic Retinopathy Grading
    Atci, Sukran Yaman
    [J]. ARTIFICIAL INTELLIGENCE FOR INTERNET OF THINGS (IOT) AND HEALTH SYSTEMS OPERABILITY, IOTHIC 2023, 2024, 8 : 88 - 103
  • [42] Classification of Diabetic Retinopathy by Deep Learning
    Al-Ahmadi, Roaa
    Al-Ghamdi, Hatoon
    Hsairi, Lobna
    [J]. INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (01) : 74 - 88
  • [43] Deep Learning for Diabetic Retinopathy Prediction
    Rodriguez-Leon, Ciro
    Arevalo, William
    Banos, Oresti
    Villalonga, Claudia
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 537 - 546
  • [44] A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification
    Jiang, Hongyang
    Xu, Jie
    Shi, Rongjie
    Yang, Kang
    Zhang, Dongdong
    Gao, Mengdi
    Ma, He
    Qian, Wei
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1560 - 1563
  • [45] An enumerative pre-processing approach for retinopathy severity grading using an interpretable classifier: a comparative study
    Vasireddi, Hemanth Kumar
    Devi, Suganya K.
    Reddy, G. N. V. Raja
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, 262 (07) : 2247 - 2267
  • [46] A deep learning system for detecting diabetic retinopathy across the disease spectrum
    Dai, Ling
    Wu, Liang
    Li, Huating
    Cai, Chun
    Wu, Qiang
    Kong, Hongyu
    Liu, Ruhan
    Wang, Xiangning
    Hou, Xuhong
    Liu, Yuexing
    Long, Xiaoxue
    Wen, Yang
    Lu, Lina
    Shen, Yaxin
    Chen, Yan
    Shen, Dinggang
    Yang, Xiaokang
    Zou, Haidong
    Sheng, Bin
    Jia, Weiping
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [47] A deep learning system for detecting diabetic retinopathy across the disease spectrum
    Ling Dai
    Liang Wu
    Huating Li
    Chun Cai
    Qiang Wu
    Hongyu Kong
    Ruhan Liu
    Xiangning Wang
    Xuhong Hou
    Yuexing Liu
    Xiaoxue Long
    Yang Wen
    Lina Lu
    Yaxin Shen
    Yan Chen
    Dinggang Shen
    Xiaokang Yang
    Haidong Zou
    Bin Sheng
    Weiping Jia
    [J]. Nature Communications, 12
  • [48] A Meta-Learning Approach for Diabetic Retinopathy Severity Grading
    Madala, Gargi
    Namburu, Anupama
    [J]. TRAITEMENT DU SIGNAL, 2024, 41 (03) : 1547 - 1556
  • [49] Severity Grading of Diabetic Retinopathy Using Extreme Learning Machine
    Punithavathi, I. S. Hephzi
    Kumar, P. Ganesh
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [50] Diabetic retinopathy detection and grading of retinal fundus images using coyote optimization algorithm with deep learning
    Parthiban, K.
    Kamarasan, M.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 18947 - 18966