A deep learning interpretable classifier for diabetic retinopathy disease grading

被引:95
|
作者
de la Torre, Jordi [1 ]
Valls, Aida [1 ]
Puig, Domenec [1 ]
机构
[1] Univ Rovira & Virgili, Escola Tecn Super Engn, Dept Engn Informat & Matemat, Avinguda Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Deep learning; Classification; Explanations; Diabetic retinopathy; Model interpretation;
D O I
10.1016/j.neucom.2018.07.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a diabetic retinopathy deep learning interpretable classifier. On one hand, it classifies retina images into different levels of severity with good performance. On the other hand, this classifier is able of explaining the classification results by assigning a score for each point in the hidden and input spaces. These scores indicate the pixel contribution to the final classification. To obtain these scores, we propose a new pixel-wise score propagation model that for every neuron, divides the observed output score into two components. With this method, the generated visual maps can be easily interpreted by an ophthalmologist in order to find the underlying statistical regularities that help to the diagnosis of this eye disease. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 50 条
  • [1] An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification
    Jiang, Hongyang
    Yang, Kang
    Gao, Mengdi
    Zhang, Dongdong
    Ma, He
    Qian, Wei
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2045 - 2048
  • [2] Deep learning in the grading of diabetic retinopathy: A review
    Tajudin, Nurul Mirza Afiqah
    Kipli, Kuryati
    Mahmood, Muhammad Hamdi
    Lim, Lik Thai
    Mat, Dayang Azra Awang
    Sapawi, Rohana
    Sahari, Siti Kudnie
    Lias, Kasumawati
    Jali, Suriati Khartini
    Hoque, Mohammed Enamul
    [J]. IET COMPUTER VISION, 2022, 16 (08) : 667 - 682
  • [3] An enhanced interpretable deep learning approach for diabetic retinopathy detection
    Alrajjou, Soha
    Boahen, Edward Kwadwo
    Menga, Chunyun
    Cheng, Keyang
    [J]. 2022 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, CYBERC, 2022, : 127 - 135
  • [4] An interpretable dual attention network for diabetic retinopathy grading: IDANet
    Bhati, Amit
    Gour, Neha
    Khanna, Pritee
    Ojha, Aparajita
    Werghi, Naoufel
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [5] The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy
    Zhang, Wen-fei
    Li, Dong-hong
    Wei, Qi-jie
    Ding, Da-yong
    Meng, Li-hui
    Wang, Yue-lin
    Zhao, Xin-yu
    Chen, You-xin
    [J]. FRONTIERS IN MEDICINE, 2022, 9
  • [6] Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy
    Martinez-Murcia, Francisco J.
    Ortiz, Andres
    Ramirez, Javier
    Gorriz, Juan M.
    Cruz, Ricardo
    [J]. NEUROCOMPUTING, 2021, 452 : 424 - 434
  • [7] Uncertainty Analysis of Deep Kernel Learning Methods on Diabetic Retinopathy Grading
    Siebert, Marlin
    Grasshoff, Jan
    Rostalski, Philipp
    [J]. IEEE ACCESS, 2023, 11 : 146173 - 146184
  • [8] A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning
    Sudha, V
    Ganeshbabu, T. R.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 827 - 842
  • [9] A domain adaptation method for deep learning based automatic diabetic retinopathy grading
    Liu, Bingyuan
    Chakor, Hadi
    Kobbi, Riadh
    Murugesan, Balamurali
    Kabir, Waziha
    Chelbi, Jihed
    Racine, Marc-Andre
    Dolz, Jose
    Ben Ayed, Ismail
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [10] Dual branch deep learning network for detection and stage grading of diabetic retinopathy
    Shakibania, Hossein
    Raoufi, Sina
    Pourafkham, Behnam
    Khotanlou, Hassan
    Mansoorizadeh, Muharram
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93