Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in Rn

被引:0
|
作者
Cao, Linfen [1 ]
Fan, Linlin [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Method of moving planes; Fractional p&q-Laplacian; Radial symmetry; Monotonicity; ELLIPTIC PROBLEM; RADIAL SYMMETRY; (P;
D O I
10.1007/s13324-022-00652-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a nonlinear system involving the fractional p&q-Laplacian in R-n { (-Delta)(p)(s1) u(x) + (-Delta(s2)(q) u(x) = f (u(x), v(x)), x is an element of R-n, (-Delta)(p)(s1) u(x) + (-Delta(s2)(q) u(x) = g (u(x), v(x)), x is an element of R-n, u, v > 0, x is an element of R-n. where 0 < s(1), s(2) < 1, p, q > 2. By using the direct method of moving planes, we prove that the positive solution (u, v) of system above must be radially symmetric and monotone decreasing in the whole space.
引用
收藏
页数:15
相关论文
共 50 条