Another generalisation of the binary Reed-Muller codes and its applications

被引:14
|
作者
Ding, Cunsheng [1 ]
Li, Chunlei [2 ]
Xia, Yongbo [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] South Cent Univ Nationalities, Dept Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclic code; Linear code; Generalised Reed-Muller code; Reed Muller code; t-design; CYCLIC CODES; LINEAR CODES; INVARIANT;
D O I
10.1016/j.ffa.2018.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The punctured binary Reed Muller code is cyclic and was generalised into the punctured generalised Reed Muller code over GF(q) in the literature. The first objective of this paper is to present another generalisation of the punctured binary Reed-Muller code and the binary Reed-Muller code, and analyse these codes. The second objective of this paper is to consider two applications of the new codes in constructing LCD codes and 2-designs. The major motivation of constructing and studying the new codes and their extended codes is the construction of 2-designs, which is an interesting topic in combinatorics. It is remarkable that the family of newly generalised cyclic codes contains a subclass of optimal ternary codes with parameters [3(m) - 1, 3(m) - 1 - 1 - 2m, 4] for all m >= 2. Their extended codes have parameters [3(m), 3(m) - 1 - 2m, 5] for all m >= 2, and are also optimal. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [21] Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 3937 - 3947
  • [22] Skew Reed-Muller codes
    Geiselmann, Willi
    Ulmer, Felix
    RINGS, MODULES AND CODES, 2019, 727 : 107 - 116
  • [23] On the non-minimal codewords in binary Reed-Muller codes
    Borissov, Y
    Manev, N
    Nikova, S
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 65 - 74
  • [24] The Treewidth of MDS and Reed-Muller Codes
    Kashyap, Navin
    Thangaraj, Andrew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4837 - 4847
  • [25] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [26] A NOTE ON REED-MULLER CODES - COMMENT
    KAUSHIK, ML
    DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) : 213 - 214
  • [27] Hulls of projective Reed-Muller codes
    Kaplan, Nathan
    Kim, Jon-Lark
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (03) : 683 - 699
  • [28] THE PARAMETERS OF PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 217 - 221
  • [29] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586
  • [30] Minimal codewords in Reed-Muller codes
    Schillewaert, J.
    Storme, L.
    Thas, J. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 273 - 286