Another generalisation of the binary Reed-Muller codes and its applications

被引:14
|
作者
Ding, Cunsheng [1 ]
Li, Chunlei [2 ]
Xia, Yongbo [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] South Cent Univ Nationalities, Dept Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclic code; Linear code; Generalised Reed-Muller code; Reed Muller code; t-design; CYCLIC CODES; LINEAR CODES; INVARIANT;
D O I
10.1016/j.ffa.2018.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The punctured binary Reed Muller code is cyclic and was generalised into the punctured generalised Reed Muller code over GF(q) in the literature. The first objective of this paper is to present another generalisation of the punctured binary Reed-Muller code and the binary Reed-Muller code, and analyse these codes. The second objective of this paper is to consider two applications of the new codes in constructing LCD codes and 2-designs. The major motivation of constructing and studying the new codes and their extended codes is the construction of 2-designs, which is an interesting topic in combinatorics. It is remarkable that the family of newly generalised cyclic codes contains a subclass of optimal ternary codes with parameters [3(m) - 1, 3(m) - 1 - 1 - 2m, 4] for all m >= 2. Their extended codes have parameters [3(m), 3(m) - 1 - 2m, 5] for all m >= 2, and are also optimal. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [1] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420
  • [2] On the PAPR of binary Reed-Muller OFDM codes
    Manji, K
    Rajan, BS
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 423 - 423
  • [3] Sequential decoding of binary Reed-Muller codes
    Stolte, N
    Sorger, U
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2000, 54 (06) : 412 - 420
  • [4] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [5] BINARY MULTILEVEL COSET CODES BASED ON REED-MULLER CODES
    PELLIZZONI, R
    SPALVIERI, A
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1994, 42 (07) : 2357 - 2360
  • [6] ON THE REED-MULLER CODES
    ASSMUS, EF
    DISCRETE MATHEMATICS, 1992, 106 : 25 - 33
  • [7] Matrix embedding in steganography with binary Reed-Muller codes
    Yang, Tingya
    Chen, Houshou
    IET IMAGE PROCESSING, 2017, 11 (07) : 522 - 529
  • [8] CRYPTANALYSIS OF THE BBCRS SYSTEM ON REED-MULLER BINARY CODES
    Kosolapov, Yu, V
    Lelyuk, A. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2021, 14 (03): : 18 - 32
  • [9] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [10] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039