Mathematical modelling of vascular tumour growth and implications for therapy

被引:1
|
作者
Panovska, Jasmina [1 ]
Byrne, Helen M. [2 ]
Maini, Philip K. [3 ]
机构
[1] Heriot Watt Univ, Chem Engn, Riccarton Campus, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Nottingham, Ctr Math Med, Sch Math Sci, Div Appl Math, Nottingham NG7 2RD, England
[3] Univ Oxford, Inst Math, Ctr Math Biol, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
vascular tumours; angiogenesis; hypoxia; anti-cancer therapy;
D O I
10.1007/978-0-8176-4558-8_18
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this chapter we briefly discuss the results of a mathematical model formulated in [22] that incorporates many processes associated with tumour growth. The deterministic model, a system of coupled non-linear partial differential equations, is a combination of two previous models that describe the tumour-host interactions in the initial stages of growth [11] and the tumour angiogenic process [6]. Combining these models enables us to investigate combination therapies that target different aspects of tumour growth. Numerical simulations show that the model captures both the avascular and vascular growth phases. Furthermore, we recover a number of characteristic features of vascular tumour growth such as the rate of growth of the tumour and invasion speed. We also show how our model can be used to investigate the effect of different anti-cancer therapies.
引用
收藏
页码:205 / +
页数:4
相关论文
共 50 条
  • [41] Mathematical modelling of glioblastoma tumour development: A review
    Hatzikirou, H
    Deutsch, A
    Schaller, C
    Simon, M
    Swanson, K
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11): : 1779 - 1794
  • [42] Mathematical modelling of the Warburg effect in tumour cords
    Astanin, Sergey
    Preziosi, Luigi
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (04) : 578 - 590
  • [43] Mathematical modelling of liposomal drug release to tumour
    Chakravarty, Koyel
    Dalal, D. C.
    [J]. MATHEMATICAL BIOSCIENCES, 2018, 306 : 82 - 96
  • [44] Mathematical modelling of the response of tumour cells to radiotherapy
    Kirkby, NF
    Burnet, NG
    Faraday, DBF
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 188 : 210 - 215
  • [45] Multiscale modelling of tumour growth and therapy: The influence of vessel normalisation on chemotherapy
    Alarcón, Tomás
    Owen, Markus R.
    Byrne, Helen M.
    Maini, Philip K.
    [J]. Computational and Mathematical Methods in Medicine, 2006, 7 (2-3) : 85 - 119
  • [46] The induction of tumour hypoxia by vascular disrupting agents and the implications for combination with radiation therapy
    Horsman, MR
    Murata, R
    [J]. BRITISH JOURNAL OF CANCER, 2004, 91 : S18 - S18
  • [47] Modelling tumour growth and progression
    Preziosi, L
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2002, 2004, 5 : 53 - 66
  • [48] Mathematical modelling of prostate cancer growth and its application to hormone therapy
    Tanaka, Gouhei
    Hirata, Yoshito
    Goldenberg, S. Larry
    Bruchovsky, Nicholas
    Aihara, Kazuyuki
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1930): : 5029 - 5044
  • [49] Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies
    McDougall, Steven R.
    Anderson, Alexander R. A.
    Chaplain, Mark A. J.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2006, 241 (03) : 564 - 589
  • [50] Mathematical modelling of tumor growth
    Grecu, D.
    Carstea, A. S.
    Grecu, A. T.
    Visinescu, Anca
    [J]. ROMANIAN REPORTS IN PHYSICS, 2007, 59 (02) : 447 - 455