Energy storage mechanism and electrochemical performance of Cu2O/rGO as advanced cathode for aqueous zinc ion batteries

被引:22
|
作者
Wu, Jian [1 ,2 ]
Meng, Jinlei [1 ,2 ]
Yang, Zhanhong [1 ,2 ]
Chen, Hongzhe [1 ,2 ]
Rong, Yao [1 ,2 ]
Deng, Lie [1 ,2 ]
Fu, Zhimin [1 ,2 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Source, Changsha 410083, Peoples R China
[2] Cent South Univ, Innovat Base Energy & Chem Mat Grad Students Trai, Changsha 410083, Peoples R China
关键词
Zinc ion batteries; Zinc storage mechanism; Cu2O/rGO; Cathode; ANODE; INTERCALATION; HYBRID; SODIUM; NANOPARTICLES; CHALLENGES; NANOSHEETS;
D O I
10.1016/j.jallcom.2021.162653
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (AZIBs) are expected to be used for large-scale energy storage, due to their environmentally friendly, low cost, abundant global stockpile, high capacity. However, the development of high-performance cathodic materials still faces huge challenges. Herein, cuprous oxide (Cu2O) and Cu2O/ reduced graphene oxide (rGO) are first reported as a cathode for AZIBs respectively. Simultaneously, the Zni/Cu2O/rGO battery exhibits significantly enhanced electrochemical performance with a high rate performance and an excellent cycle lifespan (139 mAh g(-1) after 500 cycles at 1 A g(-1) with 95.9% capacity retention), which is extremely excellent in copper-based zinc-ion battery cathode materials. Moreover, exsitu XRD and XPS results have revealed a hybrid mechanism involving conversion reactions and classical insertion/extraction reaction. when the Zn//Cu2O/rGO battery discharged from the initial state to 0.2 V, part of Cu2O will be reduced to Cu-0 with the insertion of zinc ions; when the Zn//Cu2O/rGO battery charged to 1.1 V, Cu-0 is completely oxidized to Cu2O with the deintercalation of zinc ions, and only Cu+ is existing at this time. The results reveal the energy storage mechanism of the Cu2O/rGO electrode, which will provide significant help for the research on copper based cathodic materials and expect to be further explored in other ion-batteries. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density
    Gao, Yuan
    Yin, Junyi
    Xu, Xin
    Cheng, Yonghong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) : 9773 - 9787
  • [42] Electrochemical Performance of Ti3C2Tx/MnO2 Cathode in Aqueous Zinc Ion Batteries
    Yang Bei-Bei
    Du Yan-Yan
    Zhang Yu-Lin
    Chen Ting-Ting
    Bin Duan
    Lu Hong-Bin
    Xia Yong-Yao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (04) : 578 - 588
  • [43] Effect of heat treatment on the electrochemical performance of V2O5•nH2O as a cathode material for aqueous rechargeable zinc ion batteries
    Li, Jiaqi
    Li, Yanwei
    Yao, Jinhuan
    Huang, Bin
    Jiang, Jiqiong
    Yang, Jianwen
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 554 - 560
  • [44] Laser modified MnO 2 cathode for augmented performance aqueous zinc ion batteries
    Mohamed, Mostafa M.
    Hardianto, Yuda Prima
    Hussain, Arshad
    Ganiyu, Saheed A.
    Gondal, M. A.
    Aziz, Md. Abdul
    APPLIED SURFACE SCIENCE, 2024, 669
  • [45] Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries
    Wang, Xiao
    Zhang, Zhengchunyu
    Xi, Baojuan
    Chen, Weihua
    Jia, Yuxi
    Feng, Jinkui
    Xiong, Shenglin
    ACS NANO, 2021, 15 (06) : 9244 - 9272
  • [46] The displacement reaction mechanism of the CuV2O6 nanowire cathode for rechargeable aqueous zinc ion batteries
    Yu, Xin
    Hu, Fang
    Cui, Fuhan
    Zhao, Jun
    Guan, Chao
    Zhu, Kai
    DALTON TRANSACTIONS, 2020, 49 (04) : 1048 - 1055
  • [47] High performance of Mn-doped VO2 cathode for aqueous zinc-ion batteries: An insight into Zn2+storage mechanism
    Deng, Shiyao
    Li, Hong
    Chen, Bohong
    Xu, Zijie
    Jiang, Yu
    Li, Chuanhua
    Xiao, Wei
    Yan, Xuemin
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [48] Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries
    Pam, Mei Er
    Yan, Dong
    Yu, Juezhi
    Fang, Daliang
    Guo, Lu
    Li, Xue Liang
    Li, Tian Chen
    Lu, Xunyu
    Ang, Lay Kee
    Amal, Rose
    Han, Zhaojun
    Yang, Hui Ying
    ADVANCED SCIENCE, 2021, 8 (01)
  • [49] The electrochemical properties and reaction mechanism of orthorhombic Mn2SiO4 cathode for aqueous rechargeable zinc ion batteries
    Wang, Min
    Cao, Chengwei
    Su, Fan
    Wang, Yi
    Wang, Wei
    Ding, Chuan
    Bai, Jirong
    Liu, Tianyu
    Sun, Xiaonan
    Zhang, Jintao
    JOURNAL OF POWER SOURCES, 2020, 477
  • [50] V2O3@C Microspheres as the High-Performance Cathode Materials for Advanced Aqueous Zinc-Ion Storage
    Wang, Deqiang
    Liang, Wenhao
    He, Xuedong
    Yang, Yun
    Wang, Shun
    Li, Jun
    Wang, Jichang
    Jin, Huile
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (17) : 20876 - 20884