ON FRACTAL DIMENSIONS OF FRACTAL FUNCTIONS USING FUNCTION SPACES

被引:23
|
作者
Chandra, Subhash [1 ]
Bbas, Syed A. [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Sci, Kamand 175005, Himachal Prades, India
关键词
fractal interpolation functions; convex-Lipschitz space; oscillation space; Hausdorff dimension; box dimension; HAUSDORFF DIMENSION; BOX DIMENSION; GRAPHS;
D O I
10.1017/S0004972722000685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the work of Mauldin and Williams ['On the Hausdorff dimension of some graphs', Trans. Amer. Math. Soc. 298(2) (1986), 793-803] on convex Lipschitz functions, we prove that fractal interpolation functions belong to the space of convex Lipschitz functions under certain conditions. Using this, we obtain some dimension results for fractal functions. We also give some bounds on the fractal dimension of fractal functions with the help of oscillation spaces.
引用
收藏
页码:470 / 480
页数:11
相关论文
共 50 条
  • [21] ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS
    Liu, Jia
    Shi, Saisai
    Zhang, Yuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2483 - 2492
  • [22] Fractal dimensions of fractional integral of continuous functions
    Yong Shun Liang
    Wei Yi Su
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 1494 - 1508
  • [23] On the graphs of products of continuous functions and fractal dimensions
    Jia Liu
    Saisai Shi
    Yuan Zhang
    [J]. Acta Mathematica Scientia, 2023, 43 : 2483 - 2492
  • [24] Dimensions of new fractal functions and associated measures
    Manuj Verma
    Amit Priyadarshi
    [J]. Numerical Algorithms, 2023, 94 : 817 - 846
  • [25] Output functions and fractal dimensions in dynamical systems
    de Moura, APS
    Grebogi, C
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2778 - 2781
  • [26] Fractal Dimensions of Fractional Integral of Continuous Functions
    Yong Shun LIANG
    Wei Yi SU
    [J]. Acta Mathematica Sinica, 2016, 32 (12) : 1494 - 1508
  • [27] Fractal dimensions for multiphase fractal media
    Yu, BM
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2006, 14 (02) : 111 - 118
  • [28] ON THE FRACTAL DIMENSIONS OF A COMBINED FRACTAL SET
    LING, FH
    [J]. PHYSICS LETTERS A, 1989, 138 (1-2) : 25 - 28
  • [29] Fractal Calculus of Functions on Cantor Tartan Spaces
    Golmankhaneh, Alireza Khalili
    Fernandez, Arran
    [J]. FRACTAL AND FRACTIONAL, 2018, 2 (04) : 1 - 13
  • [30] FRACTAL BASES FOR BANACH SPACES OF SMOOTH FUNCTIONS
    Navascues, M. A.
    Viswanathan, P.
    Chand, A. K. B.
    Sebastian, M. V.
    Katiyar, S. K.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (03) : 405 - 419