SVM Aggregation Modelling for Spatio-temporal Air Pollution Analysis

被引:0
|
作者
Ali, Shahid [1 ]
Tirumala, Sreenivas Sremath [1 ]
Sarrafzadeh, Abdolhossein [1 ]
机构
[1] Unitec Inst Technol, Auckland, New Zealand
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study is concerned with computation methods for environmental data analysis in order to enable facilitate effective decision making when addressing air pollution problems. A number of environmental air pollution studies often simplify the problem but fail to consider the fact that air pollution is a spatio-temporal problem. This research addresses the air pollution problem as spatio-temporal problem by proposing a new decentralized computational technique named Online Scalable SVM Ensemble Learning Method (OSSELM). Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem i.e., the data collected from multiple monitoring stations dispersed over a geographical location. Moreover, the air pollution problem is address systematically including computational detection, examination of possible causes, and air-quality prediction.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [1] Knowledge Discovery via SVM Aggregation for Spatio-temporal Air Pollution Analysis
    Ali, Shahid
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA ENGINEERING, 2018, 9 : 181 - 189
  • [2] Fine Scale Spatio-Temporal Modelling of Urban Air Pollution
    Liu, Xiaoxiao
    Bertazzon, Stefania
    [J]. GEOGRAPHIC INFORMATION SCIENCE, (GISCIENCE 2016), 2016, 9927 : 210 - 224
  • [3] Spatio-temporal air pollution modelling using a compositional approach
    Sanchez-Balseca, Joseph
    Perez-Foguet, Agusti
    [J]. HELIYON, 2020, 6 (09)
  • [4] Spatio-Temporal Modelling of Noise Pollution
    Napi, Nur Nazmi Liyana Mohd
    Zainal, Mohd Hafizul
    Abdullah, Samsuri
    Dom, Nazri Che
    Abu Mansor, Amalina
    Ahmed, Ali Najah
    Ismail, Marzuki
    [J]. INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (03): : 125 - 131
  • [5] Visual analysis of air pollution spatio-temporal patterns
    Jiayang Li
    Chongke Bi
    [J]. The Visual Computer, 2023, 39 : 3715 - 3726
  • [6] Visual analysis of air pollution spatio-temporal patterns
    Li, Jiayang
    Bi, Chongke
    [J]. VISUAL COMPUTER, 2023, 39 (08): : 3715 - 3726
  • [7] Spatio-Temporal Analysis of Large Air Pollution Data
    Bin Tarek, Mirza Farhan
    Asaduzzaman, Md
    Patwary, Mohammad
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2018, : 221 - 224
  • [8] Spatio-temporal joint modelling on moderate and extreme air pollution in Spain
    Wang, Kai
    Ling, Chengxiu
    Chen, Ying
    Zhang, Zhengjun
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2023, 30 (04) : 601 - 624
  • [9] Spatio-temporal joint modelling on moderate and extreme air pollution in Spain
    Kai Wang
    Chengxiu Ling
    Ying Chen
    Zhengjun Zhang
    [J]. Environmental and Ecological Statistics, 2023, 30 : 601 - 624
  • [10] Spatio-temporal modelling for assessing air pollution in Santiago de Chile
    Nicolis, Orietta
    Camano, Christian
    Marin, Julio C.
    Sahu, Sujit K.
    [J]. ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798