Bulk nanostructured Ni-P alloys: Elaboration from metastable Ni-P nanoparticles by spark plasma sintering; mechanical and magnetic properties

被引:6
|
作者
Bousnina, Mohamed Ali [1 ,2 ]
Turki, Faten [3 ]
Schoenstein, Frederic [2 ]
Tetard, Florent [2 ]
Rabu, Pierre [4 ]
Smiri, Leila-Samia [1 ]
Jouini, Noureddine [2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Unite Rech Synth & Struct Nanomat UR11ES30, Zarzouna 7021, Tunisia
[2] Univ Paris 13, LSPM, CNRS, UPR 3407, 99 Ave JB Clement, F-93430 Villetaneuse, France
[3] Inst Natl Rech & Anal Physicochim, Pole Technol Sidi Thabet, Lab Mat Utiles, Sidi Thabet 2020, Tunisia
[4] IPCMS UMR7504 CNRS UDS, Inst Phys & Chim Mat Strasbourg & Labex NIE, 23 Rue Loess BP43, F-67034 Strasbourg 2, France
关键词
Metastable Ni-P alloy; Nanostructured materials; Bottom-up strategy; Mechanical properties; Magnetic properties; GRAIN-GROWTH; MICROSTRUCTURAL STABILITY; TENSILE BEHAVIOR; WEAR-RESISTANCE; NICKEL; ALUMINUM; DENSIFICATION; EVOLUTION; STRENGTH; DEPOSITS;
D O I
10.1016/j.jallcom.2016.05.349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-sized nickel-phosphor powders with an average particles size of 100 nm were elaborated by polyol method and consolidated by spark plasma sintering (SPS) with sintering temperatures between 600 and 650 degrees C. This leads to consolidated materials with grain size lying in the range 179-560 nm. The relationship between the sintering parameters, microstructures and mechanical properties of these dense samples were investigated. The nickel grain sizes increased with increasing sintering temperature and holding time. The obtained samples exhibit Vickers hardness as high as 593 Hv, a modulus of elasticity of about 210 GPa, and a compressive strength of about 1.9 GPa. They have the coercive fields significantly lower (0.9-7 Oe) as the nickel bulk. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 266
页数:15
相关论文
共 50 条
  • [21] The Detailed Mechanism of Oxidation of Ni-P Alloys
    M. Wierzbicka
    A. Malecki
    Journal of Thermal Analysis and Calorimetry, 1999, 55 : 981 - 987
  • [22] Wide magnetic field range of Ni-P/PZT/Ni-P cylindrical layered magnetoelectric composites
    Pan, D. A.
    Wang, J.
    Zuo, Z. J.
    Zhang, S. G.
    Qiao, L. J.
    Volinsky, A. A.
    APPLIED PHYSICS LETTERS, 2014, 104 (12)
  • [23] STRUCTURAL TRANSITIONS IN ELECTROPLATED NI-P ALLOYS
    MCMAHON, G
    ERB, U
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1989, 8 (07) : 865 - 868
  • [24] Anodic dissolution of amorphous Ni-P alloys
    Krolikowski, A.
    Karbownicka, B.
    Jaklewicz, O.
    ELECTROCHIMICA ACTA, 2006, 51 (27) : 6120 - 6127
  • [25] The electrocatalytic behaviour of electroless Ni-P alloys
    Fundo, A. M.
    Abrantes, L. M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 600 (01) : 63 - 79
  • [26] The detailed mechanism of oxidation of Ni-P alloys
    Wierzbicka, M
    Malecki, A
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1999, 55 (03): : 981 - 987
  • [28] ELECTRODEPOSITION OF NI-P ALLOYS WITH PULSATING CURRENT
    OHNO, I
    OHFURUTON, H
    HARUYAMA, S
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1986, 50 (12) : 1075 - 1080
  • [29] THE MICROSTRUCTURE AND FATIGUE PROPERTIES OF ELECTROLESS DEPOSITED NI-P ALLOYS
    YAMASAKI, T
    IZUMI, H
    SUNADA, H
    SCRIPTA METALLURGICA, 1981, 15 (02): : 177 - 180
  • [30] Electronic transport in amorphous Ni-P alloys
    Skoropad, F
    Stadnyk, B
    PROCEEDINGS ICT'97 - XVI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 1997, : 520 - 522