Bulk nanostructured Ni-P alloys: Elaboration from metastable Ni-P nanoparticles by spark plasma sintering; mechanical and magnetic properties

被引:6
|
作者
Bousnina, Mohamed Ali [1 ,2 ]
Turki, Faten [3 ]
Schoenstein, Frederic [2 ]
Tetard, Florent [2 ]
Rabu, Pierre [4 ]
Smiri, Leila-Samia [1 ]
Jouini, Noureddine [2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Unite Rech Synth & Struct Nanomat UR11ES30, Zarzouna 7021, Tunisia
[2] Univ Paris 13, LSPM, CNRS, UPR 3407, 99 Ave JB Clement, F-93430 Villetaneuse, France
[3] Inst Natl Rech & Anal Physicochim, Pole Technol Sidi Thabet, Lab Mat Utiles, Sidi Thabet 2020, Tunisia
[4] IPCMS UMR7504 CNRS UDS, Inst Phys & Chim Mat Strasbourg & Labex NIE, 23 Rue Loess BP43, F-67034 Strasbourg 2, France
关键词
Metastable Ni-P alloy; Nanostructured materials; Bottom-up strategy; Mechanical properties; Magnetic properties; GRAIN-GROWTH; MICROSTRUCTURAL STABILITY; TENSILE BEHAVIOR; WEAR-RESISTANCE; NICKEL; ALUMINUM; DENSIFICATION; EVOLUTION; STRENGTH; DEPOSITS;
D O I
10.1016/j.jallcom.2016.05.349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-sized nickel-phosphor powders with an average particles size of 100 nm were elaborated by polyol method and consolidated by spark plasma sintering (SPS) with sintering temperatures between 600 and 650 degrees C. This leads to consolidated materials with grain size lying in the range 179-560 nm. The relationship between the sintering parameters, microstructures and mechanical properties of these dense samples were investigated. The nickel grain sizes increased with increasing sintering temperature and holding time. The obtained samples exhibit Vickers hardness as high as 593 Hv, a modulus of elasticity of about 210 GPa, and a compressive strength of about 1.9 GPa. They have the coercive fields significantly lower (0.9-7 Oe) as the nickel bulk. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 266
页数:15
相关论文
共 50 条
  • [1] From Ni-P Metastable Alloy Nanoparticles to Bulk Submicrometer Grain-Sized MMCs with Tunable Mechanical and Magnetic Properties
    Bousnina, Mohamed Ali
    Schoenstein, Frederic
    Mercone, Silvana
    Jouini, Noureddine
    METALS, 2020, 10 (01)
  • [2] MAGNETIC STUDIES OF AMORPHOUS NI-P ALLOYS
    BURGSTALLER, A
    SOCHER, W
    VOITLANDER, J
    BAKONYI, I
    TOTHKADAR, E
    LOVAS, A
    EBERT, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 109 (01) : 117 - 123
  • [3] Researches on Ni-P alloys
    Sha, Wei, 1600, (12):
  • [4] MAGNETIC-PROPERTIES OF RAPIDLY QUENCHED NI-P ALLOYS
    SCHNEIDER, J
    WIESNER, H
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1975, 29 (01): : K25 - K29
  • [5] Researches on Ni-P Alloys
    沙维
    Rare Metals, 1993, (04) : 275 - 276
  • [6] Magnetism in nanostructured Ni-P and Co-W alloys
    Szpunar, B
    Aus, M
    Cheung, C
    Erb, U
    Palumbo, G
    Szpunar, JA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 187 (03) : 325 - 336
  • [7] Magnetic Properties of Electrodeposited Ni-P Alloys with Varying Phosphorus Content
    Knyazev, A. V.
    Fishgoit, L. A.
    Chernavskii, P. A.
    Safonov, V. A.
    Filippova, S. E.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 91 (02) : 260 - 263
  • [8] OXIDATION MECHANISM OF NI-P ALLOYS
    GAJERSKI, R
    MATECKI, A
    PROCHOWSKAKLISCH, B
    WIERZBICKA, M
    JOURNAL OF THERMAL ANALYSIS, 1995, 45 (05): : 979 - 984
  • [9] Oxidation mechanism of Ni-P alloys
    Univ of Mining and Metallurgy, Cracow, Poland
    J Therm Anal, 5 (979-984):
  • [10] COMPARISON OF PROPERTIES OF NANOCRYSTALLINE AND AMORPHOUS NI-P ALLOYS
    LU, K
    WANG, JT
    WEI, WD
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1992, 25 (05) : 808 - 812