Variance-based uncertainty relations for incompatible observables

被引:33
|
作者
Chen, Bin [1 ,2 ]
Cao, Ning-Ping [3 ]
Fei, Shao-Ming [3 ,4 ]
Long, Gui-Lu [1 ,2 ,5 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty relation; Incompatible observables; Sum of variances; QUANTUM MEASUREMENTS; PRINCIPLE;
D O I
10.1007/s11128-016-1365-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate uncertainty relations for arbitrary finite number of incompatible observables. Based on the sum of variances of the observables, both Heisenberg-type and Schrodinger-type uncertainty relations are provided. These new lower bounds are stronger in most of the cases than the ones derived from some existing inequalities. Detailed examples are presented.
引用
收藏
页码:3909 / 3917
页数:9
相关论文
共 50 条
  • [31] The Competitive Effects of Variance-based Pricing
    Dierks, Ludwig
    Seuken, Sven
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 362 - 370
  • [32] Approach to clustering with variance-based XCS
    Zhang C.
    Tatsumi T.
    Nakata M.
    Takadama K.
    [J]. 1600, Fuji Technology Press (21): : 885 - 894
  • [33] Variance-based regularization with convex objectives
    Duchi, John
    Namkoong, Hongseok
    [J]. Journal of Machine Learning Research, 2019, 20
  • [34] Variance-based Regularization with Convex Objectives
    Duchi, John
    Namkoong, Hongseok
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [35] Variance-based spatial filtering in fMCG
    Chen, M
    Wakai, RT
    Van Veen, BD
    [J]. PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4, 2000, 22 : 956 - 957
  • [36] Variance-based Regularization with Convex Objectives
    Namkoong, Hongseok
    Duchi, John C.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [37] LVC: Local Variance-based Clustering
    Ibrahim, Rania
    Elbagoury, Ahmed
    Kamel, Mohamed S.
    Karray, Fakhri
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2992 - 2999
  • [38] VARIANCE-BASED SENSITIVITY ANALYSIS ON PSHA
    Wu, Min-Hao
    Wang, Jui-Pin
    Sung, Chia-Ying
    [J]. Journal of GeoEngineering, 2024, 19 (03): : 112 - 120
  • [39] Uncertainty regions of observables and state-independent uncertainty relations
    Zhang, Lin
    Luo, Shunlong
    Fei, Shao-Ming
    Wu, Junde
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (11)
  • [40] Uncertainty regions of observables and state-independent uncertainty relations
    Lin Zhang
    Shunlong Luo
    Shao-Ming Fei
    Junde Wu
    [J]. Quantum Information Processing, 2021, 20