Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves

被引:4
|
作者
Rabinovich, V [1 ]
机构
[1] Inst Politecn Nacl, ESIME Zacatenco, Mexico City 07738, DF, Mexico
关键词
SCHRODINGER-OPERATORS; ESSENTIAL SPECTRUM; SELF-ADJOINTNESS;
D O I
10.1134/S1061920821040105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 2D Dirac operator with singular potentials D-A,D-Phi,D-Qsin u(x) = (D-A,D-Phi + Q(sin)) u(x), x is an element of R-2,R- (1) where D-a,D-Phi = Sigma(2)(j=1)sigma(j) (i partial derivative(xj) + a(j)) + sigma(3)m + Phi I-2; (2)here sigma(j), j = 1, 2, 3, are Pauli matrices, a = (a(1), a(2)) is the magnetic potential with a(j) is an element of L-infinity (R-2), Phi is an element of L-infinity(R) is the electrostatic potential, Q(sin) = Q delta(Gamma) is the singular potential with the strength matrix Q = (Q(ij))(i,j=1)(2), and delta(Gamma) is the delta-function with support on a C-2- curve Gamma, which is the common boundary of the domains Omega(+/-) subset of R-2. We associate with the formal Dirac operator D-alpha,D- Phi,D-Qsin an unbounded operator D-A,D- Phi,D-Q in L-2 (R-2, C-2) generated by D-a,D- Phi with a domain in H-1(Omega(+), C-2) circle plus H-1 (Omega(-), C-2) consisting of functions satisfying interaction conditions on Gamma. We study the self-adjointness of the operator D-A,D- Phi,D-Q and its essential spectrum for potentials and curves Gamma slowly oscillating at infinity. We also study the splitting of the interaction problems into two boundary problems describing the confinement of particles in the domains Omega +/-.
引用
收藏
页码:524 / 542
页数:19
相关论文
共 50 条
  • [21] The role of electron-electron interactions in two-dimensional Dirac fermions
    Tang, Ho-Kin
    Leaw, J. N.
    Rodrigues, J. N. B.
    Herbut, I. F.
    Sengupta, P.
    Assaad, F. F.
    Adam, S.
    [J]. SCIENCE, 2018, 361 (6402) : 570 - 574
  • [22] Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
    Lee, Yu-Wen
    Lee, Yu-Li
    [J]. PHYSICAL REVIEW B, 2018, 97 (03)
  • [23] Dirac Operators with Delta-Interactions on Smooth Hypersurfaces in Rn
    Rabinovich, Vladimir
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [24] A two-dimensional Dirac fermion microscope
    Peter Bøggild
    José M. Caridad
    Christoph Stampfer
    Gaetano Calogero
    Nick Rübner Papior
    Mads Brandbyge
    [J]. Nature Communications, 8
  • [25] The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space
    Matuev, R. M.
    Taimanov, I. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 835 - 846
  • [26] Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds
    Carignano, Alberto
    Fatibene, Lorenzo
    McLenaghan, Raymond G.
    Rastelli, Giovanni
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [27] The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space
    R. M. Matuev
    I. A. Taimanov
    [J]. Mathematical Notes, 2016, 100 : 835 - 846
  • [28] Dirac cones in two-dimensional borane
    Martinez-Canales, Miguel
    Galeev, Timur R.
    Boldyrev, Alexander I.
    Pickard, Chris J.
    [J]. PHYSICAL REVIEW B, 2017, 96 (19)
  • [29] A two-dimensional Dirac fermion microscope
    Boggild, Peter
    Caridad, Jose M.
    Stampfer, Christoph
    Calogero, Gaetano
    Papior, Nick Rubner
    Brandbyge, Mads
    [J]. NATURE COMMUNICATIONS, 2017, 8 : 15783
  • [30] Dirac phonons in two-dimensional materials
    Gong, Jialin
    Wang, Jianhua
    Yuan, Hongkuan
    Zhang, Zeying
    Wang, Wenhong
    Wang, Xiaotian
    [J]. PHYSICAL REVIEW B, 2022, 106 (21)