Learning Choquet-Integral-Based Metrics for Semisupervised Clustering

被引:61
|
作者
Beliakov, Gleb [1 ]
James, Simon [1 ]
Li, Gang [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Melbourne, Vic 3125, Australia
关键词
Choquet integral; clustering; fuzzy c-means (FCM); fuzzy measure; metric learning; ordered-weighted averaging (OWA); AGGREGATION;
D O I
10.1109/TFUZZ.2011.2123899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider an application of fuzzy measures to the problem of metric learning in semisupervised clustering. We investigate the necessary and sufficient conditions on the underlying fuzzy measure that make the discrete Choquet integral suitable for defining a metric. As a byproduct, we can obtain the analogous conditions for the ordered-weighted-averaging (OWA) operators, which constitute a special case. We then generalize these results for power-based Choquet and OWA operators. We show that this metric-learning problem can be formulated as a linear-programming problem and specify the required sets of linear constraints. We present the results of numerical experiments on artificial-and real-world datasets, which illustrate the potential, usefulness, and limitations of this construction.
引用
收藏
页码:562 / 574
页数:13
相关论文
共 50 条
  • [31] Choquet integral based models for general approximation
    Narukawa, Y
    Torra, V
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2003, 100 : 39 - 50
  • [32] Data Envelopment Analysis Based on Choquet Integral
    Xia, Meimei
    Chen, Jin-Xiao
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2017, 32 (12) : 1312 - 1331
  • [33] Choquet fuzzy integral-based identification
    Srivastava, S
    Singh, M
    Hanmandlu, M
    [J]. 2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 1335 - 1340
  • [34] Choquet integral-based morphological operators
    Hocaoglu, AK
    Gader, P
    [J]. NONLINEAR IMAGE PROCESSING X, 1999, 3646 : 46 - 55
  • [35] Multimodal Gesture Recognition Based on Choquet Integral
    Hirota, K.
    Vu, H. A.
    Le, P. Q.
    Fatichah, C.
    Liu, Z.
    Tang, Y.
    Tangel, M. L.
    Mu, Z.
    Sun, B.
    Yan, F.
    Masano, D.
    Thet, O.
    Yamaguchi, M.
    Dong, F.
    Yamazaki, Y.
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 772 - 776
  • [36] The Choquet integral with respect to λ-measure based on γ-support
    Liu, Hsiang-Chuan
    Tu, Yu-Chieh
    Chen, Chin-Chun
    Weng, Wei-Sheng
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3602 - +
  • [37] Semisupervised dimensionality reduction for hyperspectral images based on the combination of semisupervised learning and metric learning
    Ahmadi, Seyyed Ali
    Mehrshad, Nasser
    Razavi, Seyyed Mohammad
    [J]. IMAGING SCIENCE JOURNAL, 2018, 66 (05): : 320 - 327
  • [38] Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking
    Tehrani, Ali Fallah
    Cheng, Weiwei
    Huellermeier, Eyke
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (06) : 1102 - 1113
  • [39] Online Sequential Learning of Fuzzy Measures for Choquet Integral Fusion
    Kakula, Siva Krishna
    Pinar, Anthony J.
    Havens, Timothy C.
    Anderson, Derek T.
    [J]. IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [40] NSCKL: Normalized Spectral Clustering With Kernel-Based Learning for Semisupervised Hyperspectral Image Classification
    Su, Yuanchao
    Gao, Lianru
    Jiang, Mengying
    Plaza, Antonio
    Sun, Xu
    Zhang, Bing
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6649 - 6662