Centre families in two-dimensional complex holomorphic dynamical systems

被引:4
|
作者
Needham, DJ [1 ]
McAllister, S [1 ]
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
关键词
dynamical systems; holomorphic; centre families;
D O I
10.1098/rspa.1998.0258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a two-dimensional complex holomorphic dynamical system. In particular, we use the singular point theory of C. H. Briot and J. C. Bouquet to establish the existence of complex holomorphic invariant manifolds of the system in the neighbourhood of an equilibrium point with two purely imaginary eigenvalues. Consequently, this enables us to establish the existence of isochronous centre families in the neighbourhood of the equilibrium point. The results are exhibited by application to the complex Takens-Bogdanov system.
引用
收藏
页码:2267 / 2278
页数:12
相关论文
共 50 条
  • [2] Isochronous and strongly isochronous oscillations of two-dimensional monodromic holomorphic dynamical systems
    V. V. Amel’kin
    O. B. Korsantiya
    Differential Equations, 2006, 42 : 159 - 164
  • [3] Isochronous and strongly isochronous oscillations of two-dimensional monodromic holomorphic dynamical systems
    Amel'kin, VV
    Korsantiya, OB
    DIFFERENTIAL EQUATIONS, 2006, 42 (02) : 159 - 164
  • [4] Complex dynamical invariants for two-dimensional nonhermitian Hamiltonian systems
    Virdi, J. S.
    Chand, F.
    Kumar, C. N.
    Mishra, S. C.
    CANADIAN JOURNAL OF PHYSICS, 2012, 90 (02) : 151 - 157
  • [5] On critical point for two-dimensional holomorphic systems
    Valenzuela-Henriquez, Francisco
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 2276 - 2312
  • [6] On two-dimensional dynamical systems with a constraint
    O. A. Lobanova
    B. N. Sadovskii
    Differential Equations, 2007, 43 : 460 - 468
  • [7] On two-dimensional dynamical systems with a constraint
    Lobanova, O. A.
    Sadovskii, B. N.
    DIFFERENTIAL EQUATIONS, 2007, 43 (04) : 460 - 468
  • [8] Complex dynamical invariants for two-dimensional complex potentials
    J S VIRDI
    F CHAND
    C N KUMAR
    S C MISHRA
    Pramana, 2012, 79 : 173 - 183
  • [9] Complex dynamical invariants for two-dimensional complex potentials
    Virdi, J. S.
    Chand, F.
    Kumar, C. N.
    Mishra, S. C.
    PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (02): : 173 - 183
  • [10] First Integrals of Two-Dimensional Dynamical Systems via Complex Lagrangian Approach
    Farooq, Muhammad Umar
    Khalique, Chaudry Masood
    Mahomed, Fazal M.
    SYMMETRY-BASEL, 2019, 11 (10):