A Semantically-Enhanced Modelling Environment for Business Process as a Service

被引:7
|
作者
Hinkelmann, Knut [1 ,2 ]
Kurjakovic, Sabrina [1 ]
Lammel, Benjamin [1 ]
Laurenzi, Emanuele [1 ,2 ]
Woitsch, Robert [3 ]
机构
[1] FHNW Univ Appl Sci & Arts Northwestern Switzerlan, Olten, Switzerland
[2] Univ Pretoria, Dept Informat, Pretoria, South Africa
[3] BOC Asset Management, Vienna, Austria
关键词
semantic lifting; enterprise modelling; business process as a service; cloud computing;
D O I
10.1109/ES.2016.25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a hybrid modeling approach which supports the continuous alignment of business and IT in the cloud. Business Process as a Service provides the end-to-end cloud support for business processes instead of single applications. A graphical modelling environment allows non-technical modelers to design business processes and to specify requirements in human-interpretable way. Via semantic lifting, the graphical models can be annotated with classes and values from an enterprise ontology. The BPaaS Ontology contains the relevant classes for the smart Business and IT-Cloud alignment. It supports the modeler in using a standard terminology and thus ensures consistent modeling.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 50 条
  • [11] Sequential visual place recognition using semantically-enhanced features
    Paturkar, Varun
    Yadav, Rohit
    Kala, Rahul
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 50477 - 50491
  • [12] Business process development in semantically-enriched environment
    Poernomo, Iman
    Umarov, Timur
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 57 - +
  • [13] Semantically-enhanced information retrieval using multiple knowledge sources
    Jiang, Yuncheng
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (04): : 2925 - 2944
  • [14] Semantically-enhanced information retrieval using multiple knowledge sources
    Yuncheng Jiang
    [J]. Cluster Computing, 2020, 23 : 2925 - 2944
  • [15] Sequential visual place recognition using semantically-enhanced features
    Varun Paturkar
    Rohit Yadav
    Rahul Kala
    [J]. Multimedia Tools and Applications, 2024, 83 : 50477 - 50491
  • [16] Semantically-enhanced Configurability in State Estimation Structures of Power Systems
    Milis, Georgios M.
    Asprou, Markos
    Kyriakides, Elias
    Panayiotou, Christos G.
    Polycarpou, Marios M.
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 679 - 686
  • [17] Semantically-enhanced on-demand resource provision and management for the grid
    Siddiqui, Mumtaz
    Fahringer, Thomas
    [J]. MULTIAGENT AND GRID SYSTEMS, 2007, 3 (03) : 327 - 339
  • [18] ARHINET A System for Generating and Processing Semantically-Enhanced Archival eContent
    Salomie, Ioan
    Dinsoreanu, Mihaela
    Pop, Cristina
    Suciu, Sorin
    Vlad, Tudor
    Iacob, Ioana
    [J]. WEBIST 2009: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2009, : 151 - 158
  • [19] SocialBROKER: A collaborative social space for gathering semantically-enhanced financial information
    Esteban-Gil, Angel
    Garcia-Sanchez, Francisco
    Valencia-Garcia, Rafael
    Fernandez-Breis, Jesualdo T.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9715 - 9722
  • [20] Semantically Enhanced Analysis of Enterprise Environment for the Needs of Business Networks Identification
    Bukowska, Elzbieta
    [J]. BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2013, 2013, 160 : 232 - 243