Quantization of the theory of half-differentiable strings

被引:0
|
作者
Sergeev, A. G. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
string theory; Connes quantization; quasisymmetric homeomorphism; universal Teichmuller space; REPRESENTATIONS;
D O I
10.1134/S0040577920050050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of quantizing the space omega(d) of smooth loops taking values in the d-dimensional vector space can be solved in the framework of the standard Dirac approach. But a natural symplectic form on omega d can be extended to the Hilbert completion of omega(d) coinciding with the Sobolev space V-d:= H-0(1/2) (S1), Double-struck capital R-d) of half-differentiable loops with values in Double-struck capital R-d. We regard V-d as the phase space of the theory of half-differentiable strings. This theory can be quantized using ideas from noncommutative geometry.
引用
收藏
页码:621 / 630
页数:10
相关论文
共 50 条