Polya tree posterior distributions on densities

被引:16
|
作者
Castillo, Ismael [1 ,2 ]
机构
[1] Univ Paris 06, UMR 7599, LPMA, UMR 7599, Paris, France
[2] Univ Paris 07, Paris, France
关键词
Bayesian nonparametrics; Polya tree distribution; Supremum norm convergence; Minimax rate; Bernstein-von Mises theorem; Bayesian Donsker theorem; ASYMPTOTIC-BEHAVIOR; NONPARAMETRIC PROBLEMS; CONCENTRATION RATES; BAYESIAN-INFERENCE; CONVERGENCE-RATES; CONTRACTION; CONSISTENCY; THEOREMS;
D O I
10.1214/16-AIHP784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Polya trees form a popular class of prior distributions used in Bayesian nonparametrics. For some choice of parameters, Polya trees are prior distributions on density functions. In this paper we carry out a frequentist analysis of the induced posterior distributions in the density estimation model. We investigate the contraction rate of Polya tree posterior densities in terms of the supremum loss and study the limiting shape distribution. A nonparametric Bernstein-von Mises theorem is established, as well as a Bayesian Donsker theorem for the posterior cumulative distribution function.
引用
收藏
页码:2074 / 2102
页数:29
相关论文
共 50 条