Spike and slab Polya tree posterior densities: Adaptive inference

被引:5
|
作者
Castillo, Ismael [1 ,2 ]
Mismer, Romain [1 ,2 ]
机构
[1] Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Paris Diderot, Lab Probabilites Stat & Modelisat, 4 Pl Jussieu, F-75005 Paris, France
关键词
Bayesian nonparametrics; Polya trees; Supremum norm convergence; Bernstein-von Mises theorem; Spike-and-slab priors; Hierarchical Bayes; VON MISES THEOREMS; VARIABLE SELECTION; CONFIDENCE BANDS; DISTRIBUTIONS;
D O I
10.1214/20-AIHP1132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the density estimation model, the question of adaptive inference using Polya tree-type prior distributions is considered. A class of prior densities having a tree structure, called spike-and-slab Polya trees, is introduced. For this class, two types of results are obtained: first, the Bayesian posterior distribution is shown to converge at the minimax rate for the supremum norm in an adaptive way, for any Holder regularity of the true density between 0 and 1, thereby providing adaptive counterparts to the results for classical Polya trees in Castillo (Ann. Inst. Henri Poincare Probab. Stat. 53 (2017) 2074-2102). Second, the question of uncertainty quantification is considered. An adaptive nonparametric Bernstein-von Mises theorem is derived. Next, it is shown that, under a self-similarity condition on the true density, certain credible sets from the posterior distribution are adaptive confidence bands, having prescribed coverage level and with a diameter shrinking at optimal rate in the minimax sense.
引用
收藏
页码:1521 / 1548
页数:28
相关论文
共 38 条
  • [1] Polya tree posterior distributions on densities
    Castillo, Ismael
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2074 - 2102
  • [2] OPTIONAL POLYA TREE AND BAYESIAN INFERENCE
    Wong, Wing H.
    Ma, Li
    [J]. ANNALS OF STATISTICS, 2010, 38 (03): : 1433 - 1459
  • [3] Inference for mixtures of finite Polya tree models
    Hanson, Timothy E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1548 - 1565
  • [4] Bayesian Inference for Structured Spike and Slab Priors
    Andersen, Michael Riis
    Winther, Ole
    Hansen, Lars Kai
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [5] Randomized polya tree models for nonparametric Bayesian inference
    Paddock, SM
    Ruggeri, F
    Lavine, M
    West, M
    [J]. STATISTICA SINICA, 2003, 13 (02) : 443 - 460
  • [6] Adaptive Shrinkage in Polya Tree Type Models
    Ma, Li
    [J]. BAYESIAN ANALYSIS, 2017, 12 (03): : 779 - 805
  • [7] SPIKE AND SLAB VARIATIONAL INFERENCE FOR BLIND IMAGE DECONVOLUTION
    Serra, Juan G.
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3765 - 3769
  • [8] Empirical Bayes analysis of spike and slab posterior distributions
    Castillo, Ismael
    Mismer, Romain
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3953 - 4001
  • [9] Parameter Estimation in Spike and Slab Variational Inference for Blind Image Deconvolution
    Serra, Juan G.
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1495 - 1499
  • [10] Bayesian Inference for Spatio-temporal Spike-and-Slab Priors
    Andersen, Michael Riis
    Vehtari, Aki
    Winther, Ole
    Hansen, Lars Kai
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18