Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota

被引:11
|
作者
Kim, Dahee
Yan, Jing
Bak, Jinwoo
Park, Jumin
Lee, Heeseob
Kim, Hyemee [1 ]
机构
[1] Pusan Natl Univ, Dept Food Sci & Nutr, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Sargassum thunbergii; anti-obesity; mice; intestinal microbiota; ADIPOSE-TISSUE; BEIGE; ADIPOGENESIS; BIOACTIVES; TARGET; BROWN;
D O I
10.3390/foods11162529
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Sargassum thunbergii (Mertens ex Roth) Kuntze (ST) is a brown alga rich in indole-2-carboxaldehyde. This study aimed to investigate the anti-obesity effects of ethanol extract from ST in in vitro and in vivo models. In 3T3-L1 cells, ST extract significantly inhibited lipid accumulation in mature adipocytes while lowering adipogenic genes (C/epba and Pparg) and enhancing metabolic sensors (Ampk, Sirt1), thermogenic genes (Pgc-1a, Ucp1), and proteins (p-AMPK/AMPK and UCP1). During animal investigation, mice were administered a chow diet, a high-fat diet (HF), or an HF diet supplemented with ST extract (at dosages of 150 and 300 mg/kg bw per day) for 8 weeks (n = 10/group). ST extract administration decreased weight gain, white adipose tissue weight, LDL-cholesterol, and serum leptin levels while improving glucose intolerance. In addition, ST extract increased the expression of Ampk and Sirt1 in adipose tissue and in the liver, as well as p-AMPK/AMPK ratio in the liver, compared to HF-fed mice. The abundance of Bacteroides vulgatus and Faecalibacterium prausnitzii in the feces increased in response to ST extract administration, although levels of Romboutsia ilealis decreased compared with those in HF-fed mice. ST extract could prevent obesity in HF-fed mice via the modulation of AMPK activation and gut microbiota composition.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice
    Zhonghua Miao
    Hanying Zheng
    Wei-Hsien Liu
    Ruyue Cheng
    Hui Lan
    Ting Sun
    Wen Zhao
    Jinxing Li
    Xi Shen
    Hongwei Li
    Haotian Feng
    Wei-Lian Hung
    Fang He
    [J]. Probiotics and Antimicrobial Proteins, 2023, 15 : 844 - 855
  • [2] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [3] Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice
    Miao, Zhonghua
    Zheng, Hanying
    Liu, Wei-Hsien
    Cheng, Ruyue
    Lan, Hui
    Sun, Ting
    Zhao, Wen
    Li, Jinxing
    Shen, Xi
    Li, Hongwei
    Feng, Haotian
    Hung, Wei-Lian
    He, Fang
    [J]. PROBIOTICS AND ANTIMICROBIAL PROTEINS, 2023, 15 (04) : 844 - 855
  • [4] Black ginseng extract attenuates high-fat diet-induced obesity by stimulating ileal TGR5 activation and modulating gut microbiota
    Luo, Yixuan
    Xue, Hui
    Wang, Xunjiang
    Fu, Lihong
    Li, Wei
    Wang, Xu
    Liu, Xuan
    Lin, Wenyuan
    Zhang, Hongli
    Gu, Lihua
    Wang, Zhengtao
    Yang, Li
    Tao, Feng
    Ding, Lili
    [J]. JOURNAL OF FUNCTIONAL FOODS, 2024, 117
  • [5] Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota
    Chen, Lin
    Jiang, Qihong
    Jiang, Chenkai
    Lu, Hongling
    Hu, Wenjun
    Yu, Shaofang
    Li, Mingqian
    Tan, Chin Ping
    Feng, Yongcai
    Xiang, Xingwei
    Shen, Guoxin
    [J]. FOOD & FUNCTION, 2023, 14 (06) : 2870 - 2880
  • [6] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    [J]. NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [7] Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Liu, Zhuoqun
    Wang, Ningning
    Ma, Yanan
    Wen, Deliang
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [8] Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice
    Song, B.
    Zhong, Y. Z.
    Zheng, C. B.
    Li, F. N.
    Duan, Y. H.
    Deng, J. P.
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2019, 127 (05) : 1546 - 1555
  • [9] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    [J]. NUTRIENTS, 2019, 11 (12)
  • [10] Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice
    Yu, Shengnan
    Wang, Haoyu
    Cui, Luwen
    Wang, Jingyi
    Zhang, Zixuan
    Wu, Zhinan
    Lin, Xiaoqian
    He, Ningning
    Zou, Yuanqiang
    Li, Shangyong
    [J]. FOOD & FUNCTION, 2023, 14 (21) : 9892 - 9906