Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice

被引:0
|
作者
Yu, Shengnan [1 ]
Wang, Haoyu [1 ,2 ,3 ]
Cui, Luwen [1 ]
Wang, Jingyi [1 ]
Zhang, Zixuan [1 ]
Wu, Zhinan [2 ]
Lin, Xiaoqian [2 ]
He, Ningning [1 ]
Zou, Yuanqiang [2 ,3 ,4 ]
Li, Shangyong [1 ,5 ]
机构
[1] Qingdao Univ, Qingdao Med Coll, Sch Basic Med, Qingdao 266071, Peoples R China
[2] BGI Shenzhen, Shenzhen 518083, Peoples R China
[3] Qingdao Europe Adv Inst Life Sci, BGI Shenzhen, Qingdao 266555, Peoples R China
[4] BGI Shenzhen, Shenzhen Engn Lab Detect & Intervent Human Intesti, Shenzhen 518083, Peoples R China
[5] Qingdao Univ, Affiliated Hosp, Dept Abdominal Ultrasound, Qingdao 266003, Peoples R China
基金
中国国家自然科学基金;
关键词
Oligosaccharides;
D O I
10.1039/d3fo02168h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.
引用
收藏
页码:9892 / 9906
页数:15
相关论文
共 50 条
  • [1] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    [J]. Food Research International, 2021, 143
  • [2] Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice
    Li, Shuo
    You, Jinming
    Wang, Zirui
    Liu, Yue
    Wang, Bo
    Du, Min
    Zou, Tiande
    [J]. FOOD RESEARCH INTERNATIONAL, 2021, 143
  • [3] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [4] The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota
    Li, Yuanyuan
    Bai, Dongsong
    Lu, Yongming
    Chen, Jia
    Yang, Haoning
    Mu, Yu
    Xu, Jialin
    Huang, Xueshi
    Li, Liya
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 234 - 246
  • [5] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    [J]. NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [6] Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Liu, Zhuoqun
    Wang, Ningning
    Ma, Yanan
    Wen, Deliang
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [7] Dietary γ-Aminobutyric Acid Supplementation Inhibits High-Fat Diet-Induced Hepatic Steatosis via Modulating Gut Microbiota in Broilers
    Chen, Qu
    Hu, Dan
    Wu, Xiaoting
    Feng, Yuyan
    Ni, Yingdong
    [J]. MICROORGANISMS, 2022, 10 (07)
  • [8] Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice
    Song, B.
    Zhong, Y. Z.
    Zheng, C. B.
    Li, F. N.
    Duan, Y. H.
    Deng, J. P.
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2019, 127 (05) : 1546 - 1555
  • [9] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    [J]. NUTRIENTS, 2019, 11 (12)
  • [10] Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota
    Kim, Dahee
    Yan, Jing
    Bak, Jinwoo
    Park, Jumin
    Lee, Heeseob
    Kim, Hyemee
    [J]. FOODS, 2022, 11 (16)