An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale

被引:87
|
作者
Blum, AS
Soto, CM
Wilson, CD
Brower, TL
Pollack, SK
Schull, TL
Chatterji, A
Lin, TW
Johnson, JE
Amsinck, C
Franzon, P
Shashidhar, R
Ratna, BR
机构
[1] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
[2] Geocenters Inc, Newton, MA 02459 USA
[3] Scripps Res Inst, Dept Biol Mol, La Jolla, CA 92037 USA
[4] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
molecular electronics; nanotechnology; protein engineering; self-assembly; viruses;
D O I
10.1002/smll.200500021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three-dimensional bottom-up self-assembly technique is developed to use biomolecules such as DNA as scaffolds. The use of viruses as nanoscale scaffolds for devices provide the exquisite control of positioning on the nanoscale. The efficacy of the approach is tested on 3D conductive molecular networks using cowpea mosaic virus (CPMV) as a scaffold. The conductance of the molecular network self-assembled on a single virus is measured using scanning tunneling microscopy (STM), which shows isolated conductive viral nanoblocks (VNB) attached to a gold substrate through a conducting molecule inserted in an insulating C11 matrix. It is observed that red connections are the least important in the formation of the network, such that their removal decreases the network conductance by just 6% to 94% of the maximum. This bottom-up approach uses different types of molecules for functions such as wires, switches, and diodes to build electronic circuits to increase the theoretical device density.
引用
收藏
页码:702 / 706
页数:5
相关论文
共 50 条
  • [31] Three-dimensional liquid surfaces through nanoparticle self-assembly
    Tseng, Tzu-Chia
    McGarrity, Erin S.
    Kiel, Jonathan W.
    Duxbury, Phillip M.
    Mackay, Michael E.
    Frischknecht, Amalie L.
    Asokan, Subashini
    Wong, Michael S.
    SOFT MATTER, 2010, 6 (07) : 1533 - 1538
  • [32] Supramolecular self-assembly of three-dimensional polyaniline and polypyrrole crystals
    Tao, Yulun
    Li, Juchuan
    Xie, Anjian
    Li, Shikuo
    Chen, Ping
    Ni, Liping
    Shen, Yuhua
    CHEMICAL COMMUNICATIONS, 2014, 50 (84) : 12757 - 12760
  • [33] Complex three-dimensional self-assembly in proxies for atmospheric aerosols
    C. Pfrang
    K. Rastogi
    E. R. Cabrera-Martinez
    A. M. Seddon
    C. Dicko
    A. Labrador
    T. S. Plivelic
    N. Cowieson
    A. M. Squires
    Nature Communications, 8
  • [34] Three-dimensional self-assembly of millimetre-scale components
    Terfort, A
    Bowden, N
    Whitesides, GM
    NATURE, 1997, 386 (6621) : 162 - 164
  • [35] Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water
    Taylor, Lauren L. K.
    Riddell, Imogen A.
    Smulders, Maarten M. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) : 1280 - 1307
  • [36] Guided three-dimensional molecular self-assembly on silicon substrates
    Chang, Chia-Ching
    Sun, Kien Wen
    Kan, Lou-Sing
    Kuan, Chieh-Hsiung
    APPLIED PHYSICS LETTERS, 2006, 88 (26)
  • [37] Self-assembly for three-dimensional integration of functional electrical components
    Cannon, AH
    Hua, YM
    Henderson, CL
    King, WP
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (11) : 2172 - 2178
  • [38] Three-dimensional self-assembly of millimetre-scale components
    Andreas Terfort
    Ned Bowden
    George M. Whitesides
    Nature, 1997, 386 : 162 - 164
  • [39] Complex three-dimensional self-assembly in proxies for atmospheric aerosols
    Pfrang, C.
    Rastogi, K.
    Cabrera-Martinez, E. R.
    Seddon, A. M.
    Dicko, C.
    Labrador, A.
    Plivelic, T. S.
    Cowieson, N.
    Squires, A. M.
    NATURE COMMUNICATIONS, 2017, 8
  • [40] Three-dimensional micro self-assembly using bridging flocculation
    Nakakubo, T
    Shimoyama, I
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) : 161 - 166