Structural and functional characterization of the N-terminal domain of human Rad51D

被引:9
|
作者
Kim, Young Mee [1 ]
Choi, Byong-Seok [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
关键词
Homologous recombination; Rad51D; NMR; Structure; Protein-DNA interaction; RECOMBINATIONAL REPAIR; IN-VIVO; COMPLEX; NMR; PROTEINS; DYNAMICS; PARALOG; IDENTIFICATION; XRCC3; GENE;
D O I
10.1016/j.biocel.2010.11.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rad51D, one of five Rad51 paralogs, is required for homologous recombination and disruption of Holliday junctions with bloom syndrome protein (BLM) in vertebrates. The N-terminal domain of Rad51D is highly conserved in eukaryotic Rad51D orthologs and is essential for protein-protein interaction with XRCC2, but nothing is known about its individual structure or function. In this study, we determined the solution structure of the human Rad51D N-terminal domain (residues 1-83), which consists of four short helices flanked by long N- and C-terminal tails. Interestingly, the position of the N-terminal tail (residues 1-13) is fixed within the domain structure via several hydrophobic interactions between Leu4 and Thr27. Leu4 and Val28, and Val6 and Ile17. We show that the domain preferentially binds to ssDNA versus dsDNA and does not bind to a mobile Holliday junction by electrophoretic mobility shift assay. NMR titration and dynamics studies showed that human Rad51D-N interacts with ssDNA by positively charged and hydrophobic residues on its surface. The results suggest that the N-terminal domain of Rad51D is required for the ssDNA-specific binding function of human Rad51D and that the conserved N-terminal domains of other Rad51 paralogs may have distinguishable functions from each other in homologous recombination. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 50 条
  • [21] Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination
    Serra, Heidi
    Da Ines, Olivier
    Degroote, Fabienne
    Gallego, Maria E.
    White, Charles I.
    PLOS GENETICS, 2013, 9 (11):
  • [22] The recombination mediator RAD51D promotes geminiviral infection
    Richter, Kathrin S.
    Serra, Heidi
    White, Charles I.
    Jeske, Holger
    VIROLOGY, 2016, 493 : 113 - 127
  • [23] Systematic Screen Identifies miRNAs That Target RAD51 and RAD51D to Enhance Chemosensitivity
    Huang, Jen-Wei
    Wang, Yemin
    Dhillon, Kiranjit K.
    Calses, Philamer
    Villegas, Emily
    Mitchell, Patrick S.
    Tewari, Muneesh
    Kemp, Christopher J.
    Taniguchi, Toshiyasu
    MOLECULAR CANCER RESEARCH, 2013, 11 (12) : 1564 - 1573
  • [24] The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae
    Tsukamoto, M
    Yamashita, K
    Miyazaki, T
    Shinohara, M
    Shinohara, A
    GENETICS, 2003, 165 (04) : 1703 - 1715
  • [25] Endometrial Cancer in a Family With RAD51D Gene Mutation
    Gilmore, Brittany
    Logan, Linda
    McKinnon, Wendy
    Everett, Elise
    Bryant, Bronwyn H.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL PATHOLOGY, 2024, 43 (04) : 349 - 353
  • [26] Structural and functional characterization of the N-terminal domain of the apical sodium-dependent bile acid transporter
    Banerjee, A
    Swaan, PW
    FASEB JOURNAL, 2004, 18 (04): : A607 - A607
  • [27] Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase Dα and Dβ
    Rahier, Renaud
    Noiriel, Alexandre
    Abousalham, Abdelkarim
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [28] Structural and functional characterization of the N-terminal acetyltransferase Naa50
    Weidenhausen, Jonas
    Kopp, Juergen
    Armbruster, Laura
    Wirtz, Markus
    Lapouge, Karine
    Sinning, Irmgard
    STRUCTURE, 2021, 29 (05) : 413 - +
  • [29] Functional and structural characterization of apidaecin and its N-terminal and C-terminal fragments
    Zhou, Xu-Xia
    Li, We-Fen
    Pan, Yuan-Jiang
    JOURNAL OF PEPTIDE SCIENCE, 2008, 14 (06) : 697 - 707
  • [30] Structure and function of the RAD51B–RAD51C–RAD51D–XRCC2 tumour suppressor
    Luke A. Greenhough
    Chih-Chao Liang
    Ondrej Belan
    Simone Kunzelmann
    Sarah Maslen
    Monica C. Rodrigo-Brenni
    Roopesh Anand
    Mark Skehel
    Simon J. Boulton
    Stephen C. West
    Nature, 2023, 619 : 650 - 657