Testing an Algorithm with Asymmetric Markov-Switching GARCH Models in US Stock Trading

被引:1
|
作者
De la Torre-Torres, Oscar V. [1 ]
Aguilasocho-Montoya, Dora [1 ]
Alvarez-Garcia, Jose [2 ]
机构
[1] Univ Michoacana San Nicolas Hidalgo UMSNH, Fac Contaduria & Ciencias Adm, Morelia 58000, Michoacan, Mexico
[2] Univ Extremadura, Fac Empresa Finanzas & Turismo, Inst Univ Invest Desarrollo Terr Sostenible INTER, Dept Econ Financiera & Contabilidad, Avd Univ 47, Caceres 10071, Spain
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
Markov-switching GARCH; equity trading; active portfolio management; algorithmic trading; S&P 500; behavioral finance; noisy traders; informed traders; ETF; mutual funds; CONDITIONAL HETEROSKEDASTICITY; BUSINESS-CYCLE; EXCHANGE-RATES; TIME-SERIES; REGIME; RISK; VOLATILITY; RETURNS; IMPACT; PRICES;
D O I
10.3390/sym13122346
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we extend the current literature in algorithmic trading with Markov-switching models with generalized autoregressive conditional heteroskedastic (MS-GARCH) models. We performed this by using asymmetric log-likelihood functions (LLF) and variance models. From 2 January 2004 to 19 March 2021, we simulated 36 institutional investor's portfolios. These used homogenous (either symmetric or asymmetric) Gaussian, Student's t-distribution, or generalized error distribution (GED) and (symmetric or asymmetric) GARCH variance models. By including the impact of stock trading fees and taxes, we found that an institutional investor could outperform the S&P 500 stock index (SP500) if they used the suggested trading algorithm with symmetric homogeneous GED LLF and an asymmetric E-GARCH variance model. The trading algorithm had a simple rule, that is, to invest in the SP500 if the forecast probability of being in a calm or normal regime at t + 1 is higher than 50%. With this configuration in the MS-GARCH model, the simulated portfolios achieved a 324.43% accumulated return, of which the algorithm generated 168.48%. Our results contribute to the discussion on using MS-GARCH models in algorithmic trading with a combination of either symmetric or asymmetric pdfs and variance models.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] On Markov-switching asymmetric log GARCH models: stationarity and estimation
    Ghezal, Ahmed
    Zemmouri, Imane
    [J]. FILOMAT, 2023, 37 (29) : 9879 - 9897
  • [2] A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading
    De la Torre-Torres, Oscar V.
    Galeana-Figueroa, Evaristo
    Alvarez-Garcia, Jose
    [J]. ENERGIES, 2020, 13 (01)
  • [3] Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models
    De la Torre-Torres, Oscar V.
    Venegas-Martinez, Francisco
    Martinez-Torre-Enciso, Ma Isabel
    [J]. MATHEMATICS, 2021, 9 (02) : 1 - 23
  • [4] A Markov-Switching VSTOXX Trading Algorithm for Enhancing EUR Stock Portfolio Performance
    De la Torre-torres, Oscar V.
    Galeana-Figueroa, Evaristo
    Alvarez-Garcia, Jose
    [J]. MATHEMATICS, 2021, 9 (09)
  • [5] Markov-switching BILINEAR - GARCH models: Structure and estimation
    Bibi, Abdelouahab
    Ghezal, Ahmed
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 307 - 323
  • [6] Markov-Switching GARCH Models in R: The MSGARCH Package
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    Trottier, Denis-Alexandre
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (04):
  • [7] Bayesian Nonparametric Panel Markov-Switching GARCH Models
    Casarin, Roberto
    Costantini, Mauro
    Osuntuyi, Anthony
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 135 - 146
  • [8] The autocorrelation structure of the Markov-switching asymmetric power GARCH process
    Haas, Markus
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1480 - 1489
  • [9] Presidential elections and the stock market: Comparing Markov-switching and fractionally integrated GARCH models of volatility
    Leblang, D
    Mukherjee, B
    [J]. POLITICAL ANALYSIS, 2004, 12 (03) : 296 - 322
  • [10] Markov-Switching GARCH and Mixture of GARCH-type Models for Accuracy in Forecasting
    Saqware, Godfrey Joseph
    Ismail, B.
    [J]. STATISTICS AND APPLICATIONS, 2022, 20 (01):