Bayesian Nonparametric Panel Markov-Switching GARCH Models

被引:1
|
作者
Casarin, Roberto [1 ]
Costantini, Mauro [2 ]
Osuntuyi, Anthony [1 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
[2] Univ Laquila, Laquila, Italy
关键词
Bayesian nonparametrics; GARCH models; Gibbs sampling; Markov-switching; Time series; MIXTURE MODEL; INFERENCE; PREDICTIONS; VOLATILITY; LIKELIHOOD;
D O I
10.1080/07350015.2023.2166049
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes Bayesian nonparametric inference for panel Markov-switching GARCH models. The model incorporates series-specific hidden Markov chain processes that drive the GARCH parameters. To cope with the high-dimensionality of the parameter space, the article assumes soft parameter pooling through a hierarchical prior distribution and introduces cross sectional clustering through a Bayesian nonparametric prior distribution. An MCMC posterior approximation algorithm is developed and its efficiency is studied in simulations under alternative settings. An empirical application to financial returns data in the United States is offered with a portfolio performance exercise based on forecasts. A comparison shows that the Bayesian nonparametric panel Markov-switching GARCH model provides good forecasting performances and economic gains in optimal asset allocation.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [1] Markov-Switching GARCH Models in R: The MSGARCH Package
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    Trottier, Denis-Alexandre
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (04):
  • [2] Markov-switching BILINEAR - GARCH models: Structure and estimation
    Bibi, Abdelouahab
    Ghezal, Ahmed
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 307 - 323
  • [3] Markov-Switching GARCH and Mixture of GARCH-type Models for Accuracy in Forecasting
    Saqware, Godfrey Joseph
    Ismail, B.
    [J]. STATISTICS AND APPLICATIONS, 2022, 20 (01):
  • [4] VaR of SSE returns Based on Bayesian Markov-Switching GARCH Approach
    Liao, Ruofan
    Boonyakunakorn, Petchaluck
    Sriboonchiita, Songsak
    [J]. PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 339 - 343
  • [5] On Markov-switching asymmetric log GARCH models: stationarity and estimation
    Ghezal, Ahmed
    Zemmouri, Imane
    [J]. FILOMAT, 2023, 37 (29) : 9879 - 9897
  • [6] Modelling volatility of cryptocurrencies using Markov-Switching GARCH models
    Caporale, Guglielmo Maria
    Zekokh, Timur
    [J]. RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2019, 48 : 143 - 155
  • [7] A Family of Markov-Switching Garch Processes
    Liu, Ji-Chun
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 892 - 902
  • [8] Long memory with Markov-Switching GARCH
    Kraemer, Walter
    [J]. ECONOMICS LETTERS, 2008, 99 (02) : 390 - 392
  • [9] INTEGRATED MARKOV-SWITCHING GARCH PROCESS
    Liu, Ji-Chun
    [J]. ECONOMETRIC THEORY, 2009, 25 (05) : 1277 - 1288
  • [10] On the stationarity of Markov-switching Garch processes
    Abramson, Ari
    Cohen, Israel
    [J]. ECONOMETRIC THEORY, 2007, 23 (03) : 485 - 500