Electricity production from twelve monosaccharides using microbial fuel cells

被引:194
|
作者
Catal, Tunc [1 ,2 ,3 ]
Li, Kaichang [2 ]
Bermek, Hakan [3 ]
Liu, Hong [1 ]
机构
[1] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Wood Sci & Engn, Corvallis, OR 97331 USA
[3] Istanbul Tech Univ, Dept Mol Biol & Genet, TR-34469 Istanbul, Turkey
关键词
microbial fuel cell; lignocellulosic biomass; monosaccharide;
D O I
10.1016/j.jpowsour.2007.09.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct generation of electricity from monosaccharides of lignocellulosic biomass was examined using air cathode microbial fuel cells (MFCs). Electricity was generated from all carbon sources tested, including six hexoses (D-glucose, D-galactose, D(-)-levulose (fructose), L-fucose, L-rhamnose, and D-mannose), three pentoses (D-Xylose, D(-)-arabinose, and D(-)-ribose), two uronic acids (D-galacturonic acid and D-glucuronic acid) and one aldonic acid (D-gluconic acid). The mixed bacterial culture, which was enriched using acetate as a carbon source, adapted well to all carbon sources tested, although the adaptation times varied from I to 70 h. The maximum power density obtained from these carbon sources ranged from 1240 +/- 10 to 2770 +/- 30 mW m(-2) at current density range of 0.76-1.18 mA cm(-2). D-Mannose resulted in the lowest maximum power density, whereas D-glucuronic acid generated the highest one. Coulombic efficiency ranged from 21 to 37%. For all carbon sources tested, the relationship between the maximum voltage output and the substrate concentration appeared to follow saturation kinetics at 120 2 external resistance. The estimated maximum voltage output ranged between 0.26 and 0.44 V and half-saturation kinetic constants ranged from 111 to 725 mg L-1. Chemical oxygen demand (COD) removal was over 80% for all carbon sources tested. Results from this study indicated that lignocellulosic biomass-derived monosaccharides might be a suitable resource for electricity generation using MFC technology. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 50 条
  • [21] A Comprehensive Study on Electricity Production from Beer Brewery Wastewater by Microbial Fuel Cells
    Ok, Jinju
    Seo, Yeong Deuk
    Jo, Eun Mi
    Lee, Dae Sung
    Woo, Seung Han
    Park, Donghee
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2011, 6 (03) : 230 - 233
  • [22] Microbial fuel cells: Generating electricity from mud
    Schmitt, Wayne Michael
    Zheng, Pu
    Cheng Wen-Yen
    Cao, Yan
    Zhao, Hou-Yin
    Pan, Wei-Ping
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [23] Microbial Fuel Cells: from biomass (waste) to electricity
    Monier, J-M.
    Niard, L.
    Haddour, N.
    Allard, B.
    Buret, F.
    [J]. 2008 IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 2008, : 642 - 647
  • [24] Electricity generation from food and animal wastewaters using microbial fuel cells
    Oh, Sang-Eun
    Kim, Jungrae
    Min, Booki
    Logan, Bruce E.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1691 - U1692
  • [25] Electricity generation from rapeseed straw hydrolysates using microbial fuel cells
    Jablonska, Milena A.
    Rybarczyk, Maria K.
    Lieder, Marek
    [J]. BIORESOURCE TECHNOLOGY, 2016, 208 : 117 - 122
  • [26] Bioelectricity Production from Soil Using Microbial Fuel Cells
    Agnieszka Wolińska
    Zofia Stępniewska
    Arletta Bielecka
    Jakub Ciepielski
    [J]. Applied Biochemistry and Biotechnology, 2014, 173 : 2287 - 2296
  • [27] Bioelectricity Production from Soil Using Microbial Fuel Cells
    Wolinska, Agnieszka
    Stepniewska, Zofia
    Bielecka, Arletta
    Ciepielski, Jakub
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 173 (08) : 2287 - 2296
  • [28] Nutrient removal and electricity production from wastewater using microbial fuel cell technique
    Tao, Qinqin
    Zhou, Shaoqi
    Luo, Jingjing
    Yuan, Jinpeng
    [J]. DESALINATION, 2015, 365 : 92 - 98
  • [29] Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell
    Wen, Qing
    Wu, Ying
    Zhao, Lixin
    Sun, Qian
    [J]. FUEL, 2010, 89 (07) : 1381 - 1385
  • [30] Electricity production from xylose using a mediator-less microbial fuel cell
    Huang, Liping
    Zeng, Raymond J.
    Angelidaki, Irini
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (10) : 4178 - 4184