An Integer Programming Formulation of the Minimum Common String Partition Problem

被引:3
|
作者
Ferdous, S. M. [1 ,2 ]
Rahman, M. Sohel [2 ]
机构
[1] AUST, Dept Comp Sci & Engn, Dhaka, Bangladesh
[2] Bangladesh Univ Engn & Technol, Dept Comp Sci & Engn, AlEDA Grp, Dhaka, Bangladesh
来源
PLOS ONE | 2015年 / 10卷 / 07期
关键词
D O I
10.1371/journal.pone.0130266
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of finding a minimum common string partition (MCSP) of two strings, which is an NP-hard problem. The MCSP problem is closely related to genome comparison and rearrangement, an important field in Computational Biology. In this paper, we map the MCSP problem into a graph applying a prior technique and using this graph, we develop an Integer Linear Programming (ILP) formulation for the problem. We implement the ILP formulation and compare the results with the state-of-the-art algorithms from the literature. The experimental results are found to be promising.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Minimum Common String Partition Parameterized
    Damaschke, Peter
    [J]. ALGORITHMS IN BIOINFORMATICS, WABI 2008, 2008, 5251 : 87 - 98
  • [22] Minimum Common String Partition Revisited
    Jiang, Haitao
    Zhu, Binhai
    Zhu, Daming
    Zhu, Hong
    [J]. FRONTIERS IN ALGORITHMICS, 2010, 6213 : 45 - +
  • [23] Exponential and Polynomial Time Algorithms for the Minimum Common String Partition Problem
    Fu, Bin
    Jiang, Haitao
    Yang, Boting
    Zhu, Binhai
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 299 - +
  • [24] Iterative Probabilistic Tree Search for the Minimum Common String Partition Problem
    Blum, Christian
    Lozano, Jose A.
    Pinacho Davidson, Pedro
    [J]. HYBRID METAHEURISTICS, HM 2014, 2014, 8457 : 145 - 154
  • [25] Minimum common string partition: on solving large-scale problem instances
    Blum, Christian
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2020, 27 (01) : 91 - 111
  • [26] An improved integer linear programming formulation for the closest 0-1 string problem
    Arbib, Claudio
    Servilio, Mara
    Ventura, Paolo
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2017, 80 : 94 - 100
  • [27] Randomized greedy multi-start algorithm for the minimum common integer partition problem
    Lozano, Manuel
    Rodriguez, Francisco J.
    Peralta, Daniel
    Garcia-Martinez, Carlos
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 50 : 226 - 235
  • [28] Quick greedy computation for minimum common string partition
    Goldstein, Isaac
    Lewenstein, Moshe
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 542 : 98 - 107
  • [29] Solving the minimum convex partition of point sets with integer programming
    Sapucaia, Allan
    Rezende, Pedro J. de
    Souza, Cid C. de
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 99
  • [30] Integer Programming Formulation of the Bilevel Knapsack Problem
    Mansi, R.
    Hanafi, S.
    Brotcorne, L.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 116 - 121