Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium-Sulfur Batteries

被引:41
|
作者
Yang, Wu [1 ,3 ]
Yang, Wang [1 ,2 ,3 ]
Sun, Bing [2 ]
Di, Shuanlong [3 ]
Yan, Kang [2 ]
Wang, Guoxiu [2 ]
Shao, Guangjie [1 ,3 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
关键词
lithium-sulfur batteries; lithium anode; artificial protective layer; mixed lithium oxynitride/oxysulfide; SOLID-ELECTROLYTE INTERPHASE; HIGH-ENERGY-DENSITY; METAL ANODE; HIGH-CAPACITY; SURFACE; DEPOSITION; SEPARATOR; RESERVOIR; CATHODE; LIQUID;
D O I
10.1021/acsami.8b14045
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium metal is strongly recognized as a promising anode material for next-generation high-energy-density systems. However, unstable solid electrolyte interphase and uncontrolled lithium dendrites growth induce severe capacity decay and short cycle life accompanied by high security risks. Here, we propose a simple method for constructing an artificial solid electrolyte interphase layer on the surface of lithium metal through spontaneous reaction, where ammonium persulfate and lithium nitrate are exploited as oxidants. The satisfactory artificial protective layer with uniform and dense morphology is composed of mixed lithium compounds, mainly including LixSOy and LixNOy species, which could effectively stabilize the interphase between electrolyte and lithium metal anode and restrain the "shuttle effect" of polysulfides. By employing the premodified lithium metal as anodes for lithium-sulfur batteries, the resulting cells exhibit excellent cycle stability (capacity decay of 0.09% per cycle over 300 cycles at 1 C and Coulombic efficiency of over 98%) and outstanding rate capability (850.8 mAh g(-1) even at 4 C). Hence, introducing a stable artificial protective layer to protect lithium anode delivers a new strategy for solving the issues related to lithium-metal batteries.
引用
收藏
页码:39695 / 39704
页数:10
相关论文
共 50 条
  • [41] Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries
    Li, Lu
    Chen, Long
    Mukherjee, Sankha
    Gao, Jian
    Sun, Hao
    Liu, Zhibo
    Ma, Xiuliang
    Gupta, Tushar
    Singh, Chandra Veer
    Ren, Wencai
    Cheng, Hui-Ming
    Koratkar, Nikhil
    ADVANCED MATERIALS, 2017, 29 (02)
  • [42] Ternary hybrid material structures for high-performance lithium-sulfur batteries
    Wang, Hailiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [43] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [44] Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries
    Ding, Bing
    Xu, Guiyin
    Shen, Laifa
    Nie, Ping
    Hu, Pengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14280 - 14285
  • [45] Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
    Lin, Zhan
    Liu, Zengcai
    Fu, Wujun
    Dudney, Nancy J.
    Liang, Chengdu
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 1064 - 1069
  • [46] An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries
    Guan, Zeliang
    Bai, Ling
    Du, Binyang
    MATERIALS, 2023, 16 (23)
  • [47] Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries
    Chen, Changyun
    Zhang, Mengfei
    Chen, Quanzhan
    Duan, Haibao
    Liu, Suli
    CHEMICAL RECORD, 2023, 23 (06):
  • [48] New flexible separators for modification of high-performance lithium-sulfur batteries
    Chen, Anjie
    Xue, Jiaojiao
    He, Jinhai
    Sun, Bowen
    Sun, Zhiqiang
    Sun, Lijuan
    Sun, Zixu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [49] New Development of Key Materials for High-Performance Lithium-Sulfur Batteries
    Liang Xiao
    Wen Zhaoyin
    Liu Yu
    PROGRESS IN CHEMISTRY, 2011, 23 (2-3) : 520 - 526
  • [50] Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries
    Xiao, Peitao
    Sun, Lixia
    Liao, Dankui
    Agboola, Phillips O.
    Shakir, Imran
    Xu, Yuxi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) : 33269 - 33275