Liver Lesion Segmentation in MSCT: Effect of Slice Thickness on Segmentation Quality, Measurement Precision and Interobserver Variability

被引:11
|
作者
Puesken, M. [1 ]
Buerke, B. [1 ]
Fortkamp, R. [1 ]
Koch, R. [2 ]
Seifarth, H. [1 ]
Heindel, W. [1 ]
Wessling, J. [1 ]
机构
[1] Univ Klinikum Munster, Inst Klin Radiol, D-48149 Munster, Germany
[2] Univ Klinikum Munster, Inst Med Informat & Biomath, D-48149 Munster, Germany
关键词
semi-automated segmentation; liver lesions; MSCT; slice thickness; MULTISLICE COMPUTED-TOMOGRAPHY; PULMONARY NODULES; AUTOMATED VOLUMETRY; CT; RECIST; METASTASES; ACCURACY; QUANTIFICATION; SOFTWARE;
D O I
10.1055/s-0029-1245983
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate the effect of slice thickness on semi-automated liver lesion segmentation. Materials and Methods: In this retrospective study, liver MSCT scans from 60 patients were reconstructed at a slice thickness of 1.5 mm, 3 mm and 5 mm. 106 liver lesions (8 64 mm, mean size 25 +/- 13 mm) were evaluated independently by two radiologists using semi-automated segmentation software (OncoTreat (R)). Lesions were classified as cystic, hypodense and hyperdense according to their contrast-to-noise ratio (CNR). The long axis diameter (LAD), short axis diameter (SAD) and volume were measured. The necessity for manual correction (NOC=relative difference between uncorrected and corrected volume) and the relative interobserver difference (RID) were determined. Precision was calculated in terms of relative measurement deviations (RMD) from the reference standard (mean of 1.5 mm data sets). Wilcoxon test, t-test and intraclass correlation coefficients (ICC) were employed for statistical analysis. All statistical analyses were intended to be exploratory. Results: Regardless of the liver lesion subtype, the NOC was found to be significantly higher for 5 mm than for 3 mm (p = 0.035) and 1.5 mm (p = 0.0002). The RID was consistently low for metric and volumetric parameters with no difference in any of the slice thicknesses for all subtypes (ICC >0.89). The RMD increased significantly for the LAD, SAD and volume at a slice thickness of 5 mm (p < 0.01), e.g. volume: 0.5% at 1.5 mm, 5.5% at 3.0 mm and 7.6% at 5.0 mm. Conclusion: Since the deviations in measurements are significant, and manual corrections made during semi-automated assessment of the liver lesions are considerable, a slice thickness of 1.5 mm, and no more than 3.0 mm, should be used for reconstruction for inconsistently vascularized liver lesions.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 15 条
  • [1] Semiautomatic Lymph Node Segmentation in Multislice Computed Tomography Impact of Slice Thickness on Segmentation Quality, Measurement Precision, and Interobserver Variability
    Buerke, Boris
    Puesken, Michael
    Beyer, Florian
    Gerss, Joachim
    Weckesser, Matthias
    Seifarth, Harald
    Heindel, Walter
    Wessling, Johannes
    [J]. INVESTIGATIVE RADIOLOGY, 2010, 45 (02) : 82 - 88
  • [2] Accuracy of Liver Lesion Assessment using Automated Measurement and Segmentation Software in Biphasic Multislice CT (MSCT)
    Puesken, M.
    Juergens, K. U.
    Edenfeld, A.
    Buerke, B.
    Seifarth, H.
    Beyer, F.
    Suehling, M.
    Osada, N.
    Heindel, W.
    Wessling, J.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2009, 181 (01): : 67 - 73
  • [3] Cortical thickness variability in multiple sclerosis: the role of lesion segmentation and filling
    Palombit, A.
    Castellaro, M.
    Calabrese, M.
    Romualdi, C.
    Pizzini, F. B.
    Montemezzi, S.
    Grisan, E.
    Bertoldo, A.
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 792 - 795
  • [4] Effect Of Interobserver And Interdisciplinary Segmentation Variability On Radiomic Features For Pancreatic Cancer
    Wong, J. Y.
    Lin, C.
    Baine, M.
    Bennion, N. R.
    Yu, L.
    Zheng, D.
    Vipin, D.
    Hollingsworth, M. A.
    Zhou, S. M.
    Zheng, D.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E769 - E770
  • [5] Effect of slice thickness on liver lesion detection and characterisation by multidetector CT
    Smith, J. T.
    Hawkins, R. M.
    Guthrie, J. A.
    Wilson, D. J.
    Arnold, P. M.
    Boyes, S.
    Robinson, P. J.
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2010, 54 (03) : 188 - 193
  • [6] Quantifying the effect of slice thickness, intravenous contrast and tube current on muscle segmentation: Implications for body composition analysis
    Fuchs, Georg
    Chretien, Yves R.
    Mario, Julia
    Do, Synho
    Eikermann, Matthias
    Liu, Bob
    Yang, Kai
    Fintelmann, Florian J.
    [J]. EUROPEAN RADIOLOGY, 2018, 28 (06) : 2455 - 2463
  • [7] Quantifying the effect of slice thickness, intravenous contrast and tube current on muscle segmentation: Implications for body composition analysis
    Georg Fuchs
    Yves R. Chretien
    Julia Mario
    Synho Do
    Matthias Eikermann
    Bob Liu
    Kai Yang
    Florian J. Fintelmann
    [J]. European Radiology, 2018, 28 : 2455 - 2463
  • [8] Lesion measurement on a combined “all-in-one” window for chest CT: effect on intra- and interobserver variability
    Annemiek Snoeckx
    Jeroen Cant
    Caro Franck
    Elisa Luyckx
    Ken Carpentier
    Simon Nicolay
    Astrid Van Hoyweghen
    Maarten J. Spinhoven
    Pieter Vuylsteke
    Paul M. Parizel
    [J]. Cancer Imaging, 19
  • [9] Lesion measurement on a combined "all-in-one" window for chest CT: effect on intra- and interobserver variability
    Snoeckx, Annemiek
    Cant, Jeroen
    Franck, Caro
    Luyckx, Elisa
    Carpentier, Ken
    Nicolay, Simon
    Van Hoyweghen, Astrid
    Spinhoven, Maarten J.
    Vuylsteke, Pieter
    Parizel, Paul M.
    [J]. CANCER IMAGING, 2019, 19 (01)
  • [10] Quality Quantification in Deep Convolutional Neural Networks for Skin Lesion Segmentation using Fuzzy Uncertainty Measurement
    Lin, Qiao
    Chen, Xin
    Chen, Chao
    Garibaldi, Jonathan M.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,