Accuracy of Liver Lesion Assessment using Automated Measurement and Segmentation Software in Biphasic Multislice CT (MSCT)

被引:16
|
作者
Puesken, M. [1 ]
Juergens, K. U. [1 ]
Edenfeld, A. [1 ]
Buerke, B. [1 ]
Seifarth, H. [1 ]
Beyer, F. [1 ]
Suehling, M. [2 ]
Osada, N. [3 ]
Heindel, W. [1 ]
Wessling, J. [1 ]
机构
[1] Univ Klinikum Munster, Inst Klin Radiol, D-48149 Munster, Germany
[2] Siemens AG, Healthcare Sector LG, Forchheim, Germany
[3] Univ Klinikum Munster, Inst Med Informat & Biomath, D-48149 Munster, Germany
关键词
CT spiral; RECIST; volumetry; segmentation software; liver lesions; COMPUTER-AIDED DETECTION; THERAPEUTIC RESPONSE; SOLID TUMORS; METASTASES; RECIST; LUNG;
D O I
10.1055/s-2008-1027848
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the accuracy of liver lesion measurement using automated measurement and segmentation software depending on the vascularization level. Materials and Methods: Arterial and portal venous phase multislice CT (MSCT) was performed for 58 patients. 94 liver lesions were evaluated and classified according to vascularity (hypervascular: 13 hepatocellular carcinomas, 20 hemangiomas; hypovascular: 31 metastases, 3 lymphomas, 4 abscesses; liquid: 23 cysts). The RECIST diameter and volume were obtained using automated measurement and segmentation software and compared to corresponding measurements derived visually by two experienced radiologists as a reference standard. Statistical analysis was performed using the Wilcoxon test and concordance correlation coefficients. Results: Automated measurements revealed no significant difference between the arterial and portal venous phase in hypovascular (mean RECIST diameter: 31.4 vs. 30.2 mm; p=0.65; kappa=0.875) and liquid lesions (20.4 vs. 20.1 mm; p=0.1; kappa=0.996). The RECIST diameter and volume of hypervascular lesions were significantly underestimated in the portal venous phase as compared to the arterial phase (30.3 vs. 26.9 mm, p=0.007, kappa=0.834; 10.7 vs. 7.9 ml, p=0.0045, kappa=0.752). Automated measurements for hypovascular and liquid lesions in the arterial and portal venous phase were concordant to the reference standard. Hypervascular lesion measurements were in line with the reference standard for the arterial phase (30.3 vs. 32.2 mm, p=0.66, kappa=0.754), but revealed a significant difference for the portal venous phase (26.9 vs. 32.1 mm; p=0.041; kappa=0.606). Conclusion: Automated measurement and segmentation software provides accurate and reliable determination of the RECIST diameter and volume in hypovascular and liquid liver lesions. Hypervascular lesions are prone to be underestimated with regard to size in the portal venous phase and therefore should preferentially be segmented in the arterial phase.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [1] Liver Lesion Segmentation in MSCT: Effect of Slice Thickness on Segmentation Quality, Measurement Precision and Interobserver Variability
    Puesken, M.
    Buerke, B.
    Fortkamp, R.
    Koch, R.
    Seifarth, H.
    Heindel, W.
    Wessling, J.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2011, 183 (04): : 372 - 380
  • [2] Accuracy of Multislice Liver CT and MRI for Preoperative Assessment of Colorectal Liver Metastases after Neoadjuvant Chemotherapy
    van Kessel, C. S.
    van Leeuwen, M. S.
    van den Bosch, M. A. A. J.
    Rinkes, I. H. M. Borel
    Mali, W. P. T. M.
    Westers, P.
    van Hillegersberg, R.
    [J]. DIGESTIVE SURGERY, 2011, 28 (01) : 36 - 43
  • [3] Automated Precancerous Lesion Screening Using an Instance Segmentation Technique for Improving Accuracy
    Agustiansyah, Patiyus
    Nurmaini, Siti
    Nuranna, Laila
    Irfannuddin, Irfannuddin
    Sanif, Rizal
    Legiran, Legiran
    Rachmatullah, Muhammad Naufal
    Florina, Gavira Olipa
    Sapitri, Ade Iriani
    Darmawahyuni, Annisa
    [J]. SENSORS, 2022, 22 (15)
  • [4] Noninvasive automated measurement of vascular lumen using multislice CT: basic phantom study
    Matsumoto, K
    Jinzaki, M
    Sato, K
    Kuribayashi, S
    [J]. CARS 2003: COMPUTER ASSISTED RADIOLOGY AND SURGERY, PROCEEDINGS, 2003, 1256 : 1402 - 1402
  • [5] Accuracy versus reproducibility: comprehensive assessment of four automated methods for multiple sclerosis lesion segmentation
    Fartaria, M. J.
    Corredor-Jerez, R.
    Richiardi, J.
    Marechal, B.
    Granziera, C.
    Cuadra, M. Bach
    Tsang, A.
    Bermel, R.
    Jones, S. E.
    Izbudak, I.
    Lui, Y. W.
    Krupp, L.
    Mowry, E. M.
    Fisher, E.
    Kober, T.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 359 - 359
  • [6] SEMI-AUTOMATED LIVER CT SEGMENTATION USING LAPLACIAN MESHES
    Chartrand, G.
    Cresson, T.
    Chav, R.
    Gotra, A.
    Tang, A.
    DeGuise, I.
    [J]. 2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 641 - 644
  • [7] Assessment of significant coronary artery stenoses with computed tomography (CT) number of the contrast medium in the reference lumen proximal and distal to the stenotic lesion by multislice CT (MSCT)
    Kuroi, Akio
    Shimamoto, Yukiko
    Kuki, Shintoro
    Kobayashi, Katsunobu
    Akasaka, Takashi
    [J]. CIRCULATION, 2006, 114 (18) : 818 - 819
  • [8] Conformity assessment of the measurement accuracy in testing laboratories using a software application
    Dinita, A.
    [J]. 13TH INTERNATIONAL CONFERENCE ON TRIBOLOGY (ROTRIB'16), 2017, 174
  • [9] Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutions Neural Network
    Wang, Kang
    Mamidipalli, Adrija
    Retson, Tara
    Bahrami, Naeim
    Hasenstab, Kyle
    Blansit, Kevin
    Bass, Emily
    Delgado, Timoteo
    Cunha, Guilherme
    Middleton, Michael S.
    Loomba, Rohit
    Neuschwander-Tetri, Brent A.
    Sirlin, Claude B.
    Hsiao, Albert
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)
  • [10] An AW-HARIS Based Automated Segmentation of Human Liver Using CT Images
    Srinivasu, P. Naga
    Ahmed, Shakeel
    Alhumam, Abdulaziz
    Kumar, Akash Bhoi
    Ijaz, Muhammad Fazal
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3303 - 3319