Surfactant-free preparation of NiO nanoflowers and their lithium storage properties

被引:34
|
作者
Cao, Feng [1 ,2 ]
Zhang, Feng [1 ]
Deng, Ruiping [1 ]
Hu, Wen [1 ,2 ]
Liu, Dapeng [1 ]
Song, Shuyan [1 ]
Zhang, Hongjie [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
来源
CRYSTENGCOMM | 2011年 / 13卷 / 15期
基金
中国国家自然科学基金;
关键词
MAGNETIC-PROPERTIES; HOLLOW SPHERES; ION BATTERY; FABRICATION; NANOSTRUCTURES; BETA-NI(OH)(2); MICROSPHERES; GROWTH; SCALE; OXIDE;
D O I
10.1039/c1ce05237c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Well-defined 3D Ni(OH)(2) nanoflowers were synthesized in high yield via a simple surfactant-free hydrothermal process. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. NiO nanoflowers have also been obtained by thermal decomposition of Ni(OH)(2) nanoflowers in air at 500 degrees C. N-2 adsorption-desorption measurements indicate the BET surface area is 198 m(2) g(-1) and the average pore size of the NiO nanoflowers is 15.1 nm. The electrochemical properties of the NiO electrodes in a lithium ion battery and magnetic performance were also investigated. The first discharge capacity of the NiO nanoflowers could reach about 1300 mA h g(-1). The unique flower-like structure played a critical role in the morphology requirement to serve as a transport path for lithium ions in lithium batteries.
引用
收藏
页码:4903 / 4908
页数:6
相关论文
共 50 条
  • [21] Electrophoresis of surfactant-free bubbles
    Harper, J. F.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 350 (01) : 361 - 367
  • [22] Microwave preparation of narrowly distributed surfactant-free stable polystyrene nanospheres
    Zhang, WM
    Gao, J
    Wu, C
    [J]. MACROMOLECULES, 1997, 30 (20) : 6388 - 6390
  • [23] Preparation and characterization of surfactant-free stimuli-sensitive microizel disversions
    Griffin, James M.
    Robb, Ian
    Bismarck, Alexander
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 104 (03) : 1912 - 1919
  • [24] A LOW TEMPERATURE, SIMPLE, SURFACTANT-FREE AND ONE POT SOLUTION CHEMISTRY ROUTE FOR SYNTHESIS OF ZnS NANOFLOWERS
    Byranvand, M. Malekshahi
    Kharat, A. Nemati
    [J]. JOURNAL OF OVONIC RESEARCH, 2014, 10 (05): : 191 - 195
  • [25] Surfactant-free alternative fuel: Phase behavior and diffusion properties
    Kayali, Ibrahim
    Jyothi, Chemboli K.
    Qamhieh, Khawla
    Olsson, Ulf
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 463 : 173 - 179
  • [26] CONSIDERATIONS ON THE SYNTHESIS AND PROPERTIES OF USUAL SURFACTANT-FREE ACRYLIC DISPERSIONS
    MOGA, N
    CUCU, O
    PANESCU, A
    POPESCU, M
    [J]. REVUE ROUMAINE DE CHIMIE, 1989, 34 (9-10) : 1995 - 2006
  • [27] Preparation and lithium storage properties of NiO-SnO2/graphene nanosheet ternary composites
    Wang, Zhao
    Mu, Jiechen
    Li, Yong
    Chen, Jin
    Zhang, Lipeng
    Li, Degang
    Zhao, Pingping
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 2909 - 2915
  • [28] Preparation and lithium storage properties of NiO-SnO2/graphene nanosheet ternary composites
    [J]. Zhang, Lipeng (zhang2015sdut@163.com), 1600, Elsevier Ltd (695):
  • [29] Highly Pseudocapacitive NiO Nanoflakes through Surfactant-Free Facile Microwave-Assisted Route
    Goel, Shubhra
    Tomar, Anuj Kumar
    Sharma, Raj Kishore
    Singh, Gurmeet
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (04): : 1540 - 1548
  • [30] Surfactant-free microencapsulation of sodium nitrate for high temperature thermal energy storage
    Lee, Jaejun
    Jo, Byeongnam
    [J]. MATERIALS LETTERS, 2020, 268