A PARALLEL EDGE ORIENTATION ALGORITHM FOR QUADRILATERAL MESHES

被引:19
|
作者
Homolya, M. [1 ,2 ]
Ham, D. A. [2 ,3 ]
机构
[1] Imperial Coll London, Grantham Inst, London SW7 2AZ, England
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2016年 / 38卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
finite element assembly; parallel algorithm; quadrilateral mesh; Firedrake; ARCHER; UNION-FIND ALGORITHMS;
D O I
10.1137/15M1021325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One approach to achieving correct finite element assembly is to ensure that the local orientation of facets relative to each cell in the mesh is consistent with the global orientation of that facet. Rognes et al. have shown how to achieve this for any mesh composed of simplex elements, and deal. II contains a serial algorithm for constructing a consistent orientation of any quadrilateral mesh of an orientable manifold. The core contribution of this paper is the extension of this algorithm for distributed memory parallel computers, which facilitates its seamless application as part of a parallel simulation system. Furthermore, our analysis establishes a link between the well-known Union-Find algorithm and the construction of a consistent orientation of a quadrilateral mesh. As a result, existing work on the parallelization of the Union-Find algorithm can be easily adapted to construct further parallel algorithms for mesh orientations.
引用
收藏
页码:S48 / S61
页数:14
相关论文
共 50 条
  • [41] Residual Distribution Schemes on Quadrilateral Meshes
    R. Abgrall
    F. Marpeau
    Journal of Scientific Computing, 2007, 30 : 131 - 175
  • [42] Structure simplification of planar quadrilateral meshes
    Akram, Muhammad Naeem
    Xu, Kaoji
    Chen, Guoning
    COMPUTERS & GRAPHICS-UK, 2022, 109 : 1 - 14
  • [43] On the finite element method on quadrilateral meshes
    Boffi, Daniele
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) : 1271 - 1282
  • [44] A new interpolatory subdivision for quadrilateral meshes
    Li, G
    Ma, W
    Bao, H
    COMPUTER GRAPHICS FORUM, 2005, 24 (01) : 3 - 16
  • [45] MINIMIZATION OF THE DISTORTION OF QUADRILATERAL AND HEXAHEDRAL MESHES
    Sarrate, Josep
    Coll, Abel
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2007, 23 (01): : 55 - 76
  • [46] Finite element approximation on quadrilateral meshes
    Arnold, DN
    Boffi, D
    Falk, RS
    Gastaldi, L
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (11): : 805 - 812
  • [47] Quadrilateral meshes with provable angle bounds
    F. Betul Atalay
    Suneeta Ramaswami
    Dianna Xu
    Engineering with Computers, 2012, 28 : 31 - 56
  • [48] An efficient parallel algorithm for the longest path problem in meshes
    Keshavarz-Kohjerdi, Fatemeh
    Bagheri, Alireza
    JOURNAL OF SUPERCOMPUTING, 2013, 65 (02): : 723 - 741
  • [49] Parallel CFD-Algorithm on Unstructured Adaptive Meshes
    Soukov S.A.
    Mathematical Models and Computer Simulations, 2022, 14 (1) : 19 - 27
  • [50] An efficient parallel algorithm for the longest path problem in meshes
    Fatemeh Keshavarz-Kohjerdi
    Alireza Bagheri
    The Journal of Supercomputing, 2013, 65 : 723 - 741