ON THE LOCAL COHOMOLOGY OF MINIMAX MODULES

被引:8
|
作者
Mafi, Amir [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
local cohomology modules; minimax modules; MATLIS REFLEXIVE MODULES; FINITENESS PROPERTIES; COFINITENESS; IDEALS; DIMENSION;
D O I
10.4134/BKMS.2011.48.6.1125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring, a an ideal of R, and M a minimax R-module. We prove that the local cohomology modules H(a)(j)(M) are a-cominimax; that is, Ext(R)(i)(R/a, H(a)(j)(M)) is minimax for all i and j in the following cases: (a) dim R/a = 1; (b) cd(a) = 1, where cd is the cohomological dimension of a in R; (c) dim R <= 2. In these cases we also prove that the Bass numbers and the Betti numbers of H(a)(j)(M) are finite.
引用
收藏
页码:1125 / 1128
页数:4
相关论文
共 50 条
  • [31] Top local cohomology modules
    Dibaei, Mohammad T.
    Yassemi, Siamak
    ALGEBRA COLLOQUIUM, 2007, 14 (02) : 209 - 214
  • [32] Artinianness of local cohomology modules
    Aghapournahr, Moharram
    Melkersson, Leif
    ARKIV FOR MATEMATIK, 2014, 52 (01): : 1 - 10
  • [33] ARTINIANNESS OF LOCAL COHOMOLOGY MODULES
    Abbasi, Ahmad
    Shekalgourabi, Hajar Roshan
    Hassanzadeh-Lelekaami, Dawood
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 295 - 304
  • [34] Annihilators of Local Cohomology Modules
    Bahmanpour, Kamal
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2509 - 2515
  • [35] On the top local cohomology modules
    Le Thanh Nhan
    Tran Do Minh Chau
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 342 - 352
  • [36] ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES
    DELFINO, D
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 79 - 84
  • [37] ON THE COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES
    Ghasemi, G.
    A'zami, J.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):
  • [38] Linearization of local cohomology modules
    Montaner, JA
    Zarzuela, S
    COMMUTATIVE ALGEBRA: INTERACTIONS WITH ALGEBRAIC GEOMETRY, 2003, 331 : 1 - 11
  • [39] Cofiniteness of Local Cohomology Modules
    Bahmanpour, Kamal
    Naghipour, Reza
    Sedghi, Monireh
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 605 - 614
  • [40] Cofiniteness of modules and local cohomology
    Hajar Sabzeh
    Reza Sazeedeh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 809 - 817