On the horizons in constrained linear quadratic regulation

被引:0
|
作者
Zhao, Xiaodong [1 ]
Lin, Zongli [2 ]
机构
[1] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310018, Peoples R China
[2] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
来源
PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 | 2007年
基金
中国国家自然科学基金;
关键词
constrained linear quadratic regulation; finite horizon; null controllable region;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work revisits the problem of infinite horizon constrained linear quadratic regulation (LQR) for discrete-time systems. It is known that there exists a finite horizon such that the infinite horizon constrained LQR problem can be solved as a finite horizon constrained LQR problem. We first propose several algorithms to estimate the upper bound of the length of this finite horizon. Conservativeness and computational complexity of these algorithms are compared through an example.
引用
收藏
页码:539 / 544
页数:6
相关论文
共 50 条
  • [21] A Riccati approach for constrained linear quadratic optimal control
    Sideris, Athanasios
    Rodriguez, Luis A.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (02) : 370 - 380
  • [22] Cardinality Constrained Linear-Quadratic Optimal Control
    Gao, Jianjun
    Li, Duan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1936 - 1941
  • [23] Constrained finite receding horizon linear quadratic control
    Primbs, JA
    Nevistic, V
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3196 - 3201
  • [24] Constrained linear quadratic optimal control of chemical processes
    Choi, JH
    Ko, HS
    Lee, KS
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 823 - 827
  • [25] Constrained Linear Quadratic Tracker for Optimal Flight Performance
    de Almeida, Fabio A.
    Guerra, Eduardo Bento
    d'Oliveira, Flavio Araripe
    Mello, Alberto Walter
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (06) : 1911 - 1918
  • [26] Constrained output regulation of linear plants
    Han, J
    Saberi, A
    Stoorvogel, AA
    Sannuti, P
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5053 - 5058
  • [27] CONSTRAINED REGULATION OF LINEAR-SYSTEMS
    BITSORIS, G
    VASSILAKI, M
    AUTOMATICA, 1995, 31 (02) : 223 - 227
  • [28] QUADRATIC LAGRANGIANS AND HORIZONS
    ROTHMAN, T
    ANNINOS, P
    PHYSICAL REVIEW D, 1991, 44 (10): : 3087 - 3095
  • [29] On Linear Quadratic Regulation of Linear Port-Hamiltonian Systems
    Caballeria, Javier
    Vargas, Francisco
    Ramirez, Hector
    Wu, Yongxin
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2020, 53 (02): : 6857 - 6862
  • [30] OPTIMAL FINITE WORDLENGTH LINEAR QUADRATIC REGULATION
    WILLIAMSON, D
    KADIMAN, K
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (12) : 1218 - 1228