Genetically regulated expression in late-onset Alzheimer's disease implicates risk genes within known and novel loci

被引:16
|
作者
Chen, Hung-Hsin [1 ,2 ]
Petty, Lauren E. [1 ,2 ]
Sha, Jin [3 ]
Zhao, Yi [4 ]
Kuzma, Amanda [4 ]
Valladares, Otto [4 ]
Bush, William [5 ]
Naj, Adam C. [3 ,4 ]
Gamazon, Eric R. [1 ,2 ]
Below, Jennifer E. [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Med, Vanderbilt Genet Inst, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Dept Med, Div Genet Med, Nashville, TN 37232 USA
[3] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[5] Case Western Reserve Univ, Sch Med, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; MENDELIAN RANDOMIZATION; IDENTIFIES VARIANTS; DEMENTIA; METAANALYSIS; TOMM40; AGE; HERITABILITY; DESIGN; INDIVIDUALS;
D O I
10.1038/s41398-021-01677-0
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Late-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants identified in genome-wide studies explain only similar to 8% of phenotypic variance. Due to its increased power and interpretability, genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and controls from the Alzheimer's Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer's Project (IGAP). Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD. Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes), illuminating the role of gene regulatory models in LOAD.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] NEDD9 is genetically associated with increased risk for late-onset Alzheimer's disease in the Italian population
    Piaceri, I.
    Tedde, A.
    Nacmias, B.
    Bagnoli, S.
    Cellini, E.
    Piacentini, S.
    Sorbi, S.
    EUROPEAN JOURNAL OF NEUROLOGY, 2009, 16 : 295 - 295
  • [32] Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease
    Ravi S. Pandey
    Leah Graham
    Asli Uyar
    Christoph Preuss
    Gareth R. Howell
    Gregory W. Carter
    Molecular Neurodegeneration, 14
  • [33] Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer's disease
    Pandey, Ravi S.
    Graham, Leah
    Uyar, Asli
    Preuss, Christoph
    Howell, Gareth R.
    Carter, Gregory W.
    MOLECULAR NEURODEGENERATION, 2019, 14 (01)
  • [34] Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease
    Olivia Belbin
    Minerva M. Carrasquillo
    Michael Crump
    Oliver J. Culley
    Talisha A. Hunter
    Li Ma
    Gina Bisceglio
    Fanggeng Zou
    Mariet Allen
    Dennis W. Dickson
    Neill R. Graff-Radford
    Ronald C. Petersen
    Kevin Morgan
    Steven G. Younkin
    Human Genetics, 2011, 129 : 273 - 282
  • [35] Early-onset Alzheimer's disease explained by polygenic risk of late-onset disease?
    Mantyh, William G.
    Cochran, J. Nicholas
    Taylor, Jared W.
    Broce, Iris J.
    Geier, Ethan G.
    Bonham, Luke W.
    Anderson, Ashlyn G.
    Sirkis, Daniel W.
    La Joie, Renaud
    Iaccarino, Leonardo
    Chaudhary, Kiran
    Edwards, Lauren
    Strom, Amelia
    Grant, Harli
    Allen, Isabel E.
    Miller, Zachary A.
    Gorno-Tempini, Marilu L.
    Kramer, Joel H.
    Miller, Bruce L.
    Desikan, Rahul S.
    Rabinovici, Gil D.
    Yokoyama, Jennifer S.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2023, 15 (04)
  • [36] Association studies between the plasmin genes and late-onset Alzheimer's disease
    Shibata, Nobuto
    Kawarai, Toshitaka
    Meng, Yan
    Lee, Joseph H.
    Lee, Hye-Seung
    Wakutani, Yosuke
    Shibata, Eri
    Pathan, Nazia
    Bi, Andrew
    Sato, Christine
    Sorbi, Sandro
    Brunie, Amalia C.
    Duara, Ranjan
    Mayeux, Richard
    Farrer, Lindsay A.
    George-Hyslop, Peter St.
    Rogaeva, Ekaterina
    NEUROBIOLOGY OF AGING, 2007, 28 (07) : 1041 - 1043
  • [37] Investigation of 15 of the top candidate genes for late-onset Alzheimer's disease
    Belbin, Olivia
    Carrasquillo, Minerva M.
    Crump, Michael
    Culley, Oliver J.
    Hunter, Talisha A.
    Ma, Li
    Bisceglio, Gina
    Zou, Fanggeng
    Allen, Mariet
    Dickson, Dennis W.
    Graff-Radford, Neill R.
    Petersen, Ronald C.
    Morgan, Kevin
    Younkin, Steven G.
    HUMAN GENETICS, 2011, 129 (03) : 273 - 282
  • [38] Candidate genes for late-onset Alzheimer's disease: Focus on chromosome 12
    Panza, F
    Colacicco, AM
    D'Introno, A
    Capurso, C
    Liaci, M
    Capurso, SA
    Capurso, A
    Solfrizzi, V
    MECHANISMS OF AGEING AND DEVELOPMENT, 2006, 127 (01) : 36 - 47
  • [39] Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer’s disease
    M. A. Nalls
    R. J. Guerreiro
    J. Simon-Sanchez
    J. T. Bras
    B. J. Traynor
    J. R. Gibbs
    L. Launer
    J. Hardy
    A. B. Singleton
    neurogenetics, 2009, 10 : 183 - 190
  • [40] Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer's disease
    Nalls, M. A.
    Guerreiro, R. J.
    Simon-Sanchez, J.
    Bras, J. T.
    Traynor, B. J.
    Gibbs, J. R.
    Launer, L.
    Hardy, J.
    Singleton, A. B.
    NEUROGENETICS, 2009, 10 (03) : 183 - 190